A troposelectivity in the reactions of ortholithiated aromatic tertiary amides with aldehydes

Peter B owles, J onathan C layden,* M adeleine H elliwell, † C atherine M cC arthy, M atthew Tomkinson and N eil Westlund

Department of Chemistry, University of M anchester, Oxford R d., M anchester, UK M 13 9P L

The products of the addition of ortholithiated N, N-dialkylnaphthamides to aldehydes are pairs of stable, diastereoisomeric atropisomers, formed with selectivities of up to 90:10 in favour of the syn-atropisomer.

Introduction

Directed metallation is a regioselective reaction, and electrophilic capture of lithiated aromatic amides and carbamates is a powerful method for regioselective synthesis of orthodisubstituted aromatic rings. ${ }^{1,2}$ A Ithough this reaction has made its home in the flat world of aromatic chemistry, it has on occasions also been shown to have stereoselective attributes. An early example was Mukaiyama's chiral-auxiliary-controlled addition of a lithiated aminal to aldehydes. ${ }^{3}$ Lithiated chiral oxazolines ${ }^{4}$ and amides ${ }^{5}$ have been added to aldehydes, but with only poor levels of stereocontrol. M ore recently the use of arene-chromium tricarbonyl complexes has allowed ortholithiation reactions to be made enantioselective by the use of chiral bases, ${ }^{6-12}$ or acetal ${ }^{13,14}$ or aminal ${ }^{15,16}$ chiral auxiliaries.

A romatic chemistry is rarely truly flat, and indeed one of the most powerful directors of aromatic ortholithiation, the tertiary amide group, ${ }^{2}$ cannot lie in the plane of the aromatic ring for steric reasons. In N, N-diisopropylbenzamide $\mathbf{1}$, steric hindrance surrenders to conjugation when the amide is twisted at an angle 57° to the ring, ${ }^{17}$ but in 2 -substituted ${ }^{17}$ or 2,6 disubstituted $\ddagger \mathrm{N}, \mathrm{N}$-dialkylbenzamides $\mathbf{2}$ or $\mathbf{3}$ steric hindrance totally dominates the ground state conformation and the amide and ring lie more or less perpendicular.

1

3
For unsymmetrically substituted tertiary amides such as $\mathbf{2}$ or $\mathbf{3}\left(R^{2} \neq R^{3}\right)$, the chirality which results from this perpendicular arrangement manifests itself spectroscopically in the diastereotopicity of CH_{2} or $\mathrm{CHMe} \mathrm{M}_{2}$ groups attached to the amide ${ }^{5,19-22}$ or the ring. ${ }^{23}$ The coalescence of the proton NM R signals of these diastereotopic groups at high temperatures \wp^{24-26} has shown the chirality of 2 -substituted benzamides 2 to be

[^0]transient, with the barrier to interconversion of the enantiomers of 4 in DM SO being $60 \mathrm{~kJ} \mathrm{~mol}^{-1,25}$ corresponding to a half-life for racemisation of 0.004 at $20^{\circ} \mathrm{C}$. In 2,6 -disubstituted benzamides 3, however, steric hindrance slows rotation about the $\mathrm{C}-\mathrm{CO}$ bond to the point where atropisomers (that is, conformers that are stable on the laboratory timescale ${ }^{28}$) can be isolated. The first successful example was the separation of $\mathbf{5}$ into a meso and a racemic diastereomer and the resolution of

4

$(\pm)-5$

6

7
the latter into two atropisomeric enantiomers. ${ }^{29,30}$ The work of Ohno and co-workers ${ }^{31,32}$ and of Buck and co-workers ${ }^{33-36}$ has highlighted the role of hindrance to amide planarity in the mechanism of action of NADH, and the simplenicotinamide 6 has been resolved into two atropisomeric enantiomers. ${ }^{33} \mathrm{~A}$ mides 7 have been resolved by chromatography on chiral stationary phases by M annschreck and co-workers ${ }^{37,38}$ and by Pirkle et al. ${ }^{39}$
Along with NMR experiments, ${ }^{40-42}$ these resolutions have allowed the barriers to racemisation of 2,6 -disubstituted N, N dialkylbenzamides 3 to be determined, and many are enantiomerically stable for several hours in solution at room temperature Chromatographic separation of diastereoisomeric 2,6disubstituted benzamides has been reported by Bates et al. ${ }^{43}$ and by Hudlický et al. ${ }^{44}$

Provided it suffers sufficient steric hindrance to rotation, then, an aromatic carboxamidegroup may confer axial chirality on a molecule M ore specifically, the synthesis of a 2,6 disubstituted benzamide $\mathbf{3}$ from a 2 -substituted benzamide $\mathbf{2}$ creates a new element of chirality. Thayumanavan et al. ${ }^{45}$ have shown that this process can be made enantioselective by treating N, N-dialkylnaphthamides 8 with Bu'Li-sparteine to make enentiomerically enriched atropisomeric 2-methylnaphthamides 9 (Scheme 1). In this paper, we describe experiments in the

[^1]

Scheme 1
racemic series which demonstrate that the addition of lithiated N, N-dialkylnaphthamides to aldehydes, a reaction in which two new chiral elements (a chiral centre and a rotationally restricted C-CO bond) are generated, is diastereoselective. ${ }^{46}$

Results and discussion

The proton NMR spectrum of N, N-diisopropyl-1-naphthamide 10 at $20^{\circ} \mathrm{C}$ shows four clear diastereotopic methyl doublets, and we determined that the barrier to racemisation of this compound was $75 \mathrm{~kJ} \mathrm{~mol}^{-\mathbf{1}}$ by variable temperature N M R spectroscopy in DM SO solution. The barrier to racemisation of N, N-diethyl-1-naphthamide $\mathbf{1 3}$ was somewhat lower at 65 kJ $\mathrm{mol}^{-1}, \mathrm{ll}$ and although one of the CH_{2} groups is split into a diastereotopic pair of signals, these signals are broad in the proton NM R spectrum at $20^{\circ} \mathrm{C}$. Both of these compounds were ortholithiated [Busti, THF, $-78^{\circ} \mathrm{C}$ (we found that the addition of TMEDA ${ }^{1}$ was unnecessary)] and gave 2 -substituted naphth amides $11,12,14$ and 15 with methyl iodide or trimethylsilyl chloride The ${ }^{1} \mathrm{H}$ NMR spectra of 11 and 14 indicated that the molecules were still chiral on the N M R timescale even at $150^{\circ} \mathrm{C}$ and $170^{\circ} \mathrm{C}$ respectively in 1,2 -dichlorobenzene. The chirality of all four 2-substituted compounds was demonstrated by resolving them into two enantiomers by analytical HPLC on a chiral stationary phase (Whelk-01). ${ }^{39}$

There are several reports of the addition of ortholithiated naphthamides to aldehydes. ${ }^{47-54}$ In none of these cases was an alcohol isolated - heating with acid converted it directly into the required lactone, so any stereoselectivity the reaction may

IT The barrier to racemisation of this compound in CHCl_{3} at 5 M Pa pressure has been reported ${ }^{25}$ as $63 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
have possessed passed unnoticed. We wanted to investigate the stereochemistry of the addition, so we took our two naphthamides 10 and 13, ortholithiated them under the same conditions and added aldehydes to them at $-78^{\circ} \mathrm{C}$. The reactions were warmed to $-20^{\circ} \mathrm{C}$ and then quenched with ammonium chloride (Scheme 2). A small aliquot was extracted and kept cold for analytical HPLC, the remainder being worked up rapidly and the crude product mixture kept cool to prevent thermal epimerisation. The product ratio was determined by analytical HPLC of the extracted aliquot and the identity of the H PLC peaks confirmed by flash column chromatography of the product mixture and separate characterisation of the two atropisomers $\mathbf{1 6 a}$ and $\mathbf{1 6 b}$ or $\mathbf{1 7 a}$ and $\mathbf{1 7 b}$ after preparative HPLC. The purified atropisomers were stable compounds and interconverted only slowly in dichloromethane solution at room temperature (the ratio of atropisomers after work-up was little changed from the aliquots extracted at $0^{\circ} \mathrm{C}$, and the composition of solutions kept at $-18{ }^{\circ} \mathrm{C}$ for 4 to 9 weeks remained constant).
Theyields and diastereo isomeric ratios obtained in these reactions are shown in Table 1. In every case, the more retained (more polar) diastereoisomer 16a or 17a predominated and we take this consistent polarity difference, along with the consistent differences in the NMR spectra of the two atropisomers detailed below, as evidence that the reaction proceeds with the same sense of diastereoselectivity (which we term atroposelectivity ${ }^{55}$) in every case. The minor diastereoisomer was identified in one case ($\mathbf{1 6 b}, \mathrm{R}=\mathrm{Ph}$) by determination of an X -ray crystal structure (Fig. 1), and from this we deduce that the reaction consistently produces predominantly the syn-isomer, and assign syn-stereochemistry to 16a and 17a and anti-stereochemistry to $\mathbf{1 6 b}$ and 17 b . The degree of selectivity is greater for the diisopropyl amides 16 than the diethyl amides 17 , and best selectivities were found with propionaldehyde ($\mathrm{R}=\mathrm{Et}$). Selectivity dropped when R was smaller or larger than ethyl. The observed selectivities must arise by kinetic control-the products eventually equilibrate to a thermodynamic ratio of approximately 1:1 on standing for long periods of time in solution at room temperature.

The X-ray crystal structure of $\mathbf{1 6 b}(\mathrm{R}=\mathrm{Ph})$ shown in Fig .1 illustrates the perpendicular relationship between the amide

Table 1 A tropisomers obtained from addition of lithiated amides to aldehydes

	Yield $\mathbf{1 6}(\%)$	Ratio $\mathbf{1 6 a}: \mathbf{1 6 b}$	Yield $\mathbf{1 7}(\%)$	Ratio $\mathbf{1 7 a}: \mathbf{1 7 b}$
R	92	$85: 15$	67	$77: 23$
Me	79	$90: 10$	76	$78: 22$
Et	75	$82: 18$	85	$77: 23$
$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{\mathbf{1 1}}$	91	$77: 23$	85	$70: 30$
Pr^{i}	Ph	89	$72: 28$	85

Fig. $1 \quad X-R$ ay crystal structure of $\mathbf{1 6 b}(R=P h)$
group and the naphthalene ring. The dihedral angle between the $\mathrm{C}=0$ and $\mathrm{C}(1)-\mathrm{C}(2)$ bonds is, in this case, $89.3^{\circ} . \|$

In an attempt to increase the stereoselectivity of these reactions, we made the more bulky bis(1-propylbutyl) amide 20. Two sequential reductive aminations using heptan-4-one gave 18 then 19 , which was converted straightforwardly to the amide 20 by reaction with 1-naphthoyl chloride (Scheme 3). A n attempt to make an even more bulky amine $\mathbf{2 2}$ from dicyclohexyl ketone (Scheme 4) failed at the second amination, presumably because of the extreme steric hindrance of primary amine 21.
Surprisingly, attempted lithiation of the bis(1-propylbutyl) amide 20 with BusLi (in the presence or absence of TM EDA) resulted largely in addition of the organolithium to the naphthyl ring to give $\mathbf{2 3}$ as a mixture of diastereoisomers,** and only a moderate yield of aldehyde $\mathbf{2 4}$ was obtained when the reaction was quenched with DMF (Scheme 5). Lithiation with Buti was more successful, but the ortholithiated amide reacted with aldehydes to give the alcohols 25 in poor yield and with low atroposelectivity: with acetaldehyde the two atropisomers 25a and $\mathbf{2 5 b}(R=M e)$ were isolated in 14 and 21% yield; with benzaldehyde the atropisomers 25a and 25b ($\mathrm{R}=\mathrm{Ph}$) were isolated in 11 and 25% yield. The size of the $N R_{2}$ group now appears too great: the alkyllithium is diverted from the edge-on approach required for ortholithiation towards the face-on approach leading to addition to the ring, and the aryllithium which does form is too hindered to react satisfactorily with aldehydes.

In contrast with the formation of aryllithiums by directed lithiation, ${ }^{2,56}$ relatively little is known about the detailed mechanism of the reaction of aryllithiums with electrophiles. A ryllithiums generally exist as monomer-dimer mixtures in THF,

[^2]
Scheme 3

$\mathrm{NH}_{4} \mathrm{OAc}$,
NaCNBH_{3}
$\mathrm{NCl}, \mathrm{MeOH}$
$\xrightarrow{\mathrm{HCl}, \mathrm{MeOH}}$

220%

Scheme 4

though it seems likely that at this concentration they react as monomers. ${ }^{57-60}$ The most likely geometry for a transition state is the one shown in Scheme 6, in which lithium is smoothly transferred from C to O, the lithium-bearing carbon assumes a temporary tetrahedral shape, and the excess of electrons in the transition state can be dissipated into the aromatic ring system. The stereochemical sense of our reactions suggests attack of the aldehyde on the more hindered face of the aryllithium, with the R group held clear of the amide nitrogen's substituents. The requirement of the lithium for tetrahedral coordination may well be the mediator of this selectivity, with displacement of a ligand from this lithium coordination site either being thermodynamically favoured (the aldehyde carbonyl group is smaller than THF in this hindered position) or generating a more reactive aryllithium-aldehyde complex. Introducing a chelating ligand in an attempt to disrupt this transition state had no effect: lithiated N, N-diisopropyInaphthamide 10 reacted with propionaldehyde with an almost unchanged $88: 12$ selectivity in the presence of TM EDA.
Whatever the origin of the selectivity in all these reactions, we have demonstrated for the first time that the stereochemical course of the reactions of lithiated tertiary amides, widely used in directed metallation chemistry, is controlled by the conformation of the CON R_{2} amide group. U p to 90% of a single atropisomer may be formed in the reactions of these compounds with aldehydes. These are few examples of diastereoselective syntheses of atropisomers apart from the biaryls, ${ }^{61}$ though the atropisomeric chirality of another class of conformationally restricted amides has been used to control the formation of new chiral centres highly effectively. ${ }^{55,62}$

$\mathbf{2 4 4 \%}$ or 40\%
20
$1 \mathrm{Bu} \mathrm{Li}, \mathrm{THF},-78^{\circ} \mathrm{C}$
2 RCHO, $-78^{\circ} \mathrm{C}$
$3 \mathrm{NH}_{4} \mathrm{Cl},-20^{\circ} \mathrm{C}$

25a
$(\mathrm{R}=\mathrm{Me}, 21 \% ;$
$\mathrm{R}=\mathrm{Ph}, 25 \%)$

($\mathrm{R}=\mathbf{\mathrm { Me }} \mathbf{2 5}$
($\mathrm{R}=\mathrm{Me}, 14 \%$;
$\mathrm{R}=\mathrm{Ph}, 11 \%$)

Scheme 5

Identification of the atropisomers

We are confident that the sense of the diastereoselectivity in these reactions is the same in every case (a) because the major compound is always the more polar and (b) because of consistent differences between the NMR spectra of the more polar and less polar atropisomers. The most significant of these differences are: (i) in the ${ }^{13} \mathrm{C}$ chemical shift of the $\mathrm{C}=0$ carbon, which is consistently about 1 ppm further downfield in the major diastereoisomer 16a or 17a than in the minor diastereoisomer 16b or 17b, and (ii) in the ${ }^{13} \mathrm{C}$ chemical shift of the CHOH carbon, which is consistently about 1 ppm further upfield in the major diastereoisomer than in the minor diastereoisomer. We therefore reason that the anti-stereochemistry shown by the X-ray crystal structure of $\mathbf{1 6 b}(\mathrm{R}=\mathrm{Ph})(\mathrm{Fig} .1)$ is a reliable guide to the relative stereochemistry of all of these products. Stereochemical assignment of $\mathbf{2 5 a}$ and $\mathbf{2 5 b}$ is provisional and based purely on their elution order.

Experimental

F lash chromatography refers to chromatography carried out on silica by the method of Still et al. ${ }^{63}$ A nalytical H PLC was carried out on a Waters $\mathrm{Z} \mathrm{M} \mathrm{odule} \mathrm{(} 10 \mathrm{~cm}$ by 8 mm , packed SiO_{2} stationary phase) at room temperature using a Waters 510 pump with the flow rate at $2.0 \mathrm{ml} \mathrm{min}^{-1}$. Detection was at 280 nm using a Perkin-Elmer LC 480 Auto Scan Diode Array detector. Preparative HPLC was carried out on a Dynamax60A column at room temperature using a Gilson 305 Pump with flow rate at $15.0 \mathrm{ml} \mathrm{min}^{-1}$. Detection was at 280 nm using a Gilson 115 U V D etector. R etention times (t_{r}) were measured by analytical H PLC using the stated solvent system. Ether refers to diethyl ether. J Values are given in Hz .

G eneral procedure for synthesis of amides ${ }^{49}$

Thionyl chloride ($1.83 \mathrm{ml}, 0.025 \mathrm{~mol}$) was added to a solution of 1-naphthoic acid ($4.000 \mathrm{~g}, 0.023 \mathrm{~mol}$) in dichloromethane (5

ml) and the mixture stirred under a drying tube for 2.5 h and evaporated under reduced pressure to give the crude acyl chloride as a dark brown oil. Ether (10 ml) and a solution of the dialkylamine (0.05 mol) in ether (10 ml) was added at $0^{\circ} \mathrm{C}$ over a period of 45 min . Stirring was continued for 2 h at room temperature. The mixture was diluted with ether and washed with water and the aqueous phase extracted with ether (50 $\mathrm{ml} \times 2$). The organic phases were combined and washed with 1 m hydrochloric acid ($50 \mathrm{ml} \times 2$), water ($50 \mathrm{ml} \times 2$) and brine $(100 \mathrm{ml})$, dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and evaporated under reduced pressure to give the crude amide.

N,N-D iisopropyl-1-naphthamide 10

In this way, 1-naphthoic acid ($4.000 \mathrm{~g}, 0.023 \mathrm{~mol}$) and diisopropylamine ($6.90 \mathrm{ml}, 0.049 \mathrm{~mol}$) gave a crude pale brown solid, which was recrystallised from ethyl acetate to give pale brown needles ($2.791 \mathrm{~g}, 47 \%$), mp $183-184^{\circ} \mathrm{C}$ (lit., ${ }^{64} 181-182^{\circ} \mathrm{C}$); $v_{\text {max }}($ fil m$) / \mathrm{cm}^{-1} 1622(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 8.0-7.3(7 \mathrm{H}$, m, ArH) , $3.63(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH} \times 2), 1.75(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7), 1.68(3 \mathrm{H}$, d, J 7), 1.15 (3 H, d, J 7) and $1.06(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)\left(\mathrm{CH}_{3} \times 4\right) ; \delta_{\mathrm{c}}(75$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 170.1(\mathrm{C}=0), 136.9,133.6,129.6,128.3,128.2$, 126.7, 126.3, 125.3, 125.0, 122.1 (Ar), 51.1, $46.0(\mathrm{NCH} \times 2$), 20.9, 20.8, 20.75 and $20.7\left(\mathrm{CH}_{3} \times 4\right)$; m / z (EI) 255 (63%, M^{+}).

N,N-D iethyl-1-naphthamide 13

In the same way, 1-naphthoic acid ($4.000 \mathrm{~g}, 0.023 \mathrm{~mol}$) and diethylamine ($5.09 \mathrm{ml}, 0.049 \mathrm{~mol}$) gave a crude brown oil, which was distilled, bp $158-160^{\circ} \mathrm{C} / 0.4 \mathrm{mmH}$ g (lit., ${ }^{65} 145-148^{\circ} \mathrm{C} / 0.3$ mmH g) to give the amide 13 as an oil ($2.98 \mathrm{~g}, 57 \%$); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 1630(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; 298 \mathrm{~K}\right) 7.9-7.2(7 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 3.85\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}_{\mathrm{C}} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.55\left(1 \mathrm{H}, \mathrm{brm}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $3.1\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 8, \mathrm{CH}_{2}\right), 1.38\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right)$ and $1.00(3 \mathrm{H}, \mathrm{t}$, J $7, \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 170.3(\mathrm{C}=0), 135.2,133.5,129.6$, 128.8, 128.4, 126.9, 126.4, 125.2, 124.8, 123.2 (Ar), 43.1, 39.1 $\left(\mathrm{CH}_{2} \times 2\right), 14.3$ and $13.1\left(\mathrm{CH}_{3} \times 2\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 227\left(92 \%, \mathrm{M}^{+}\right)$; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; 203 \mathrm{~K}\right) 7.9-7.4(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.90(1 \mathrm{H}$, $\left.\mathrm{dq}, \mathrm{J} 14,7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.45\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 14,7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.08(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 1.35\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right)$ and $0.96\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right)$.

N,N-D iisopropyl-2-methyl-1-naphthamide 11

$\mathrm{sec}-\mathrm{Butyllithium}(1.8 \mathrm{ml}$ of a 1.3 m solution in cyclohexane, 2.4 mmol) was added to a stirred solution of N, N-diisopropyl-1naphthamide 10 ($0.561 \mathrm{~g}, 2.2 \mathrm{mmol}$) in dry THF (40 ml) under nitrogen at $-78{ }^{\circ} \mathrm{C}$. A fter 30 min , methyl iodide ($0.27 \mathrm{ml}, 4.4$ mol) was added to the yellow-sepia solution. The mixture was stirred for a further 30 min at $-78^{\circ} \mathrm{C}$ then allowed to warm to $0^{\circ} \mathrm{C}$. Saturated aqueous ammonium chloride and water were added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml} \times 3)$. The combined organic fractions were washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated under reduced pressure to give a crude product which was recrystallised from ethyl acetate to give the amide 11 as needles ($0.283 \mathrm{~g}, 48 \%$), mp 192-192.5 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}$ (film)/ cm^{-1} 2968, 1617, 1441 and 1321; $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right)$ 7.9-7.2 ($\left.6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}\right), 3.58(2 \mathrm{H}$, septet, J $7, \mathrm{NCH} \times 2$), $2.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 1.76(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7), 1.65(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7), 1.09$ (3 $\mathrm{H}, \mathrm{d}, \mathrm{J} 7$) and $0.98(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \times 4\right]$; $\delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) $169.8(\mathrm{C}=0), 134.6,131.6,130.7,129.8,128.5,128.0$, 127.7, 126.5, 125.4, 124.6 (A r), 51.1, $46.1(\mathrm{NCH} \times 2), 21.2$, 21.1, 20.8, $20.7\left(\mathrm{CHM} \mathrm{e}_{2} \times 2\right)$ and $19.3\left(\mathrm{ArCH}_{3}\right)$ (Found: C , 80.3; $\mathrm{H}, 8.54 ; \mathrm{N}, 5.10 \%$; M^{+}, 269.1783. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}$ requires C , 80.2; H , 8.61; N, 5.20\%; M , 269.1780).

N,N-D iisopropyl-2-trimethylsilyl-1-naphthamide 12

In the same way, N, N-diisopropyl-1-naphthamide 10 (1.75 g , 6.9 mmol) and trimethylsilyl chloride ($1.74 \mathrm{ml}, 13.7 \mathrm{mmol}$) gave a crude product which was recrystallised from ethyl acetate to give the amide 12 as needles ($1.70 \mathrm{~g}, 76 \%$), mp 156.9-157.5 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 2969,2363,2766,1628,1454,1438,1323$ and 1041; $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.9-7.3(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 3.64(1 \mathrm{H}$, septet, J 7, N CH), 3.49 (1 H , septet, J 7, N CH), $1.83(3 \mathrm{H}, \mathrm{d}$, J 7), 1.70 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7$), $1.13(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7$), 0.92 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7$) [$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \times 4$] and $0.41(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e} 3) ; \delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 170.9 ($\mathrm{C}=0$), 141.9, 133.7, 133.5, 130.9, 129.6, 127.9, 126.9, 126.6, 126.1, 125.5 (A r), 51.0, $46.4(\mathrm{NCH} \times 2), 21.2,20.6$, 20.5, $20.2\left(\mathrm{CHM}_{2} \times 2\right)$ and $0.9\left(\mathrm{SiM} \mathrm{e}_{3}\right)$ (Found: C, 73.7; H 8.81; $\mathrm{N}, 4.22 \% ; \mathrm{M}^{+}, 327.2012 . \mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}$ OSi requires $\mathrm{C}, 73.3 ; \mathrm{H}$, 8.92; N , 4.28\%; M , 327.2018).

N,N-D iethyl-2-methyl-1-naphthamide 14

In the same way, N,N-diethyl-1-naphthamide $13(0.40 \mathrm{~g}, 1.8$ mmol) and methyl iodide (2.5 mmol) gave a crude product which was purified by flash chromatography and then reversedphase preparative HPLC (methanol-water) to give the amide 14 as an oil ($0.119 \mathrm{~g}, 30 \%$). $v_{\max }($ film $) / \mathrm{cm}^{-1} 1626$ ($\mathrm{C}=0$); $\delta_{\mathrm{H}}(250$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) 7.9-7.3 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $3.86(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 13$ and 7, $\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}$), 3.73 ($1 \mathrm{H}, \mathrm{dq}$, J 14 and $7, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}$ e), 3.13 (2 $\left.\mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{NCH}_{2} \mathrm{Me}\right), 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 1.42(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7)$ and 0.98 (3 H, t, J 7) [$\mathrm{N}_{\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right] ; \delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 169.9}$ ($\mathrm{C}=0$) , 133.4, 131.6, 131.3, 129.8, 128.4, 128.2, 128.0, 126.8, 125.4, 124.5 (Ar), 42.7, $38.7\left(2 \times \mathrm{NCH}_{2}\right), 19.4\left(\mathrm{ArCH}_{3}\right), 14.1$ and $13.0\left(2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 242(100 \%, M+\mathrm{H})$ (Found: $\mathrm{M}^{+}, 241.1467 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{M}, 241.1467$).

$\mathrm{N}, \mathrm{N}-\mathrm{D}$ iethyl-2-trimethyIsilyl-1-naphthamide 15

In the same way, N, N-diethyl-1-naphthamide $13(0.40 \mathrm{~g}, 1.8$ mmol) and trimethylsilyl chloride (2.5 mmol) gave a crude product which was purified by flash chromatography and then reversed-phase preparative H PLC (acetonitrile-water), yielding the amide 15 as an oil ($0.252 \mathrm{~g}, 53 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1630$ ($\mathrm{C}=0$) ; $\delta_{\mathrm{H}}(250 \mathrm{M} \mathrm{Hz;} \mathrm{CDCI} 3$) 7.9-7.3 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $3.90(1 \mathrm{H}$, dq , J 13 and $7, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}$), $3.43(1 \mathrm{H}, \mathrm{dq}$, J 14 and 7 , $\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}$), $3.13\left(2 \mathrm{H}, \mathrm{ABX}_{3} \mathrm{~m}, \mathrm{NCH}_{2} \mathrm{Me}\right.$), $1.45(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$), $0.95(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7)\left[\mathrm{N}_{\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right]}\right.$ and $0.35\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}_{3}\right) ; \delta_{\mathrm{c}}(75$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) $170.8(\mathrm{C}=0), 140.9,134.1,133.4,130.6,129.4$, 128.1, 127.3, 126.6, 124.9, 124.5 (Ar), 43.7, $39.1\left(2 \times \mathrm{NCH}_{2}\right)$, $30.1\left(\mathrm{SiM}_{3}\right), 13.8$ and $13.0\left(2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}) 300$ (100\%, $\mathrm{M}+\mathrm{H}$) (Found: M^{+}, 299.1705. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}$ OSi requires M, 299.1705).

$\left(R_{a}{ }^{*}, \mathbf{1}^{\prime} \mathbf{R}^{*}\right)$ - and $\left(\mathbf{R}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \mathbf{S}^{*}\right)$-N ,N-D iisopropyl-2-($\mathbf{1}^{\prime}$-hydroxy-
 ethyl)-1-naphthamide 16b and 16a ($R=M$ e)

sec-Butyllithium (3.4 ml of a 1.3 m solution in cyclohexane) was added to a stirred solution of N, N-diisopropyl-1-naphthamide $10(1.02 \mathrm{~g}, 4 \mathrm{mmol})$ in dry THF (60 ml) under nitrogen at $-78^{\circ} \mathrm{C}$. A fter 30 min , freshly distilled acetaldehyde (1 ml) was added to the yellow-sepia solution. The mixture was stirred for a further 30 min at $-78^{\circ} \mathrm{C}$ then allowed to warm to $-20^{\circ} \mathrm{C}$. A fter 30 min , freshly distilled acetaldehyde (1 ml) was added to the yellow-sepia solution. The mixture was stirred for a further 30 min at $-78^{\circ} \mathrm{C}$ then allowed to warm to $-20^{\circ} \mathrm{C}$. Saturated aqueous ammonium chloride was added and a small aliquot removed from the organic layer and transferred to a freezer at $-18^{\circ} \mathrm{C}$. A nalytical H PLC of this sample showed a 15:85 ratio for diastereoisomers. The remainder of the mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 3)$. The combined organic fractions were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure at a temperature not exceeding $30^{\circ} \mathrm{C}$. The crude product was purified by flash chromatography [$1: 1$ petrol (bp $60-80^{\circ} \mathrm{C}$)-EtOA c then EtOA c] to give $1.095 \mathrm{~g}(92 \%)$ of a $21: 79$ mixture of atropisomers. Separation by preparative HPLC ($1: 1$ hexane-EtOAc) gave ($\mathrm{Ra}^{*}, 1^{\prime} \mathrm{R}^{*}$)-N,N-diisopropyl-2-(1'-hydroxyethyl)-1-naphthamide 16b ($\mathrm{R}=$ Me) as a white solid, $m p 146-148{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.57 ; \mathrm{t}_{\mathrm{r}}(2: 1$ hexane-EtOAc) $13.3 \mathrm{~min} ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3402(\mathrm{OH})$ and 1609 ($\mathrm{C}=0$); $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 7.9-7.4(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.11(1 \mathrm{H}$, q, J 6.5, CHOH), $3.61(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}), 1.78(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0)$, $1.69(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0), 1.56(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5), 1.11(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0)$ and $1.00(3 \mathrm{H}, \mathrm{d}, \mathrm{j} 7.0)\left(5 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 169.1(\mathrm{C}=0)$, 138.3, 132.8, 132.5, 129.3, 128.7, 128.1, 126.7, 126.1, 125.0, 123.1 (Ar), 68.1 (CHOH) $51.2,46.2(2 \times \mathrm{NCH}), 25.7$, 20.9, 20.7, 20.6 and $20.5\left(5 \times \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}) 300(100 \%$, $\mathrm{M}+\mathrm{H}$) (Found: M^{+}, 299.1962. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires M , 299.1963).

A Iso obtained was ($\mathrm{R}_{\mathrm{a}}{ }^{*}, 1^{\prime} \mathrm{S}^{*}$)-N,N -diisopropyl-2-(1'-hydroxy-ethyl)-1-naphthamide $16 \mathrm{a}(\mathrm{R}=\mathrm{M}$ e) as a white solid, mp 113$114^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}$ (EtOA c) 0.54; $\mathrm{t}_{\mathrm{r}}(2: 1$ hexane-EtOA c) 24.4 min ; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3427(\mathrm{OH})$ and $1609(\mathrm{C}=0) ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}$; CDCl ${ }_{3}$) 7.9-7.4 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $5.10(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CHOH}$), 3.68 (1 H , septet, J 7), 3.59 (1 H , septet, J 7) ($2 \times \mathrm{NCH}$), $3.55(1 \mathrm{H}$, br s, OH), $1.80(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7$), $1.76(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7), 1.68(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)$, $1.12(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)$ and $1.10(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)\left(5 \times \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 170.1(\mathrm{C}=0), 138.1,133.9,132.8,129.2,128.8,128.2$, 126.8, 126.3, 124.9, 123.2, (Ar), 66.6 (CHOH), 51.4, 46.4 $(2 \times N C H), 21.3,20.9,20.6,20.6$ and $20.5\left(5 \times \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI})$ 300 ($100 \%, \mathrm{M}+\mathrm{H}$) (Found: M^{+}, 299.1963. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N} \mathrm{O}_{2}$ requires M, 299.1963).

$\left(\mathbf{R}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \mathbf{R}^{*}\right)$ - and ($\left.\mathbf{R a}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \mathbf{S}^{*}\right)$-N \mathbf{N} - - iethyl-2-($\mathbf{1}^{\prime}$-hydroxyethyl)-1naphthamide 17b and 17a ($R=M e$)

In the same way, N,N-diethyl-1-diethyl-1-naphthamide 13 (0.91 $\mathrm{g}, 4 \mathrm{mmol}$) and acetaldehyde (1 ml) gave a crude product which was purified by flash chromatography [1:1 petrol (bp 60$80^{\circ} \mathrm{C}$)-EtOA c then EtOA c] to give a mixture of the two atropisomers 17b and 17a $(R=M$ e) $(0.726 \mathrm{~g}, 67 \%)$. A nalytical HPLC ($2: 1$ hexane-EtOAc) of the crude aliquot showed the atropisomers to be present in a ratio of 23:77; analytical HPLC of the purified material showed a ratio of $28: 72$. The chromatographed mixture was separated by preparative HPLC (1:1 hexane-EtOA c) to give ($\mathrm{R}_{\mathrm{a}}, 1^{\prime} \mathrm{R}^{*}$)-N,N-diethyl-2-(I^{\prime}-hydroxy-ethyl)-1-naphthamide $\mathbf{1 7 b}(\mathrm{R}=\mathrm{Me}$) as a white solid, mp 132 $134^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}$ (EtOA c) $0.40 ; \mathrm{t}_{\mathrm{r}}(2: 1$ hexane-EtOAc) 24.6 min ; $v_{\text {max }}$ (film)/cm ${ }^{-1} 3417(\mathrm{OH})$ and $\left.1610(\mathrm{C}=0) ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz;CDCl})_{3}\right)$ 8.0-7.4 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $5.04(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.5, \mathrm{CHOH}), 3.73(2 \mathrm{H}$, m), $3.10(2 \mathrm{H}, \mathrm{m})\left(2 \times \mathrm{NCH}_{2}\right), 2.72(1 \mathrm{H}, \mathrm{br}$ s, OH), $1.56[3 \mathrm{H}, \mathrm{d}$, J $\left.6.5, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right], 1.40(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5)$ and $0.96(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5)$ $\left(2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$) $\delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 169.4(\mathrm{C}=0), 138.9,132.8$, 131.2, 129.3, 129.1, 128.2, 126.9, 126.2, 124.8,123.2 (A r), 68.3 $(\mathrm{CHOH}), 43.2,38.9\left(2 \times \mathrm{NCH}_{2}\right), 25.7\left[\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right], 13.9$ and $12.9\left(2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 272(8 \%, \mathrm{M}+\mathrm{H})$ and 254 (100,
$\mathrm{M}-\mathrm{OH}$) (Found: M^{+}, 271.1566. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires M , 271.1572).

Also obtained was ($\left.\mathrm{R}_{\mathrm{a}}{ }^{*}, 1^{\prime} \mathrm{S}^{*}\right)$ - N, N-diethyl-2-(1'-hydroxy-ethyl)-1-naphthamide 17a ($\mathrm{R}=\mathrm{Me}$) as a white solid, mp 115$118{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}$ (EtOAc) 0.40; $\mathrm{t}_{\mathrm{r}}(2: 1$ hexane-EtOAc) 27.4 min ; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3416(\mathrm{OH}), 1611(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 8.0-7.4(6H, m, ArH), 5.03(1 H , q, J 6.5, CH OH), 3.76(2H,m), $3.09(2 \mathrm{H}, \mathrm{m})\left(2 \times \mathrm{NCH}_{2}\right), 1.60\left[3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right]$, $1.43(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5)$ and $1.00(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5)\left(2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}(75$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) 170.1 ($\mathrm{C}=0$), 139.1, 132.7, 132.1, 129.2, 129.1, 128.3, 127.0, 126.3, 124.7, 123.3 (Ar), 66.7 (CH OH), 43.3, 38.9 $\left(2 \times \mathrm{NCH}_{2}\right), 22.1\left[\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right], 13.8$ and $12.8\left(2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; m / z (CI) $272(9 \%, \mathrm{M}+\mathrm{H})$ and 254 ($100, \mathrm{M}-\mathrm{OH}$) (Found: M^{+}, 271.1567. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N} \mathrm{O}_{2}$ requires M , 271.1572).

($\mathrm{Ra}^{*}{ }^{*}, \mathbf{1}^{\prime} \mathbf{R}^{*}$)- and ($\left.\mathrm{Ra}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \mathrm{S}^{*}\right)$ - N, N-D iisopropyl-2-($\mathbf{1}^{\prime}$-hydroxy-propyl)-1-naphthamide 16b and 16a ($R=E t$)

In the same way, N,N -diisopropyl-1-naphthamide 10 ($1.02 \mathrm{~g}, 4$ mmol) and propionaldehyde gave a 10:90 mixture of atropisomers 16b and 16a ($R=E t$), which was purified by flash chromatography [1:1 petrol (bp $60-80^{\circ} \mathrm{C}$)-EtOA c] to give $0.993 \mathrm{~g}(79 \%)$ of a $22: 78$ mixture of atropisomers. Separation by preparative HPLC ($1: 1$ hexane-EtOAc) gave ($\mathrm{Ra}_{\mathrm{a}}{ }^{*}, 1^{\prime} \mathrm{R}^{*}$)N, N-diisopropyl-2-(1'-hydroxypropyl)-1-naphthamide 16b ($\mathrm{R}=$ Et) as a white solid, $m p 148-150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}[1: 1$ petrol (bp 60$\left.\left.80^{\circ} \mathrm{C}\right)-\mathrm{EtOA} \mathrm{c}\right] 0.47 ; \mathrm{t}_{\mathrm{r}}\left(2: 1\right.$ hexane-EtOAc) $4.3 \mathrm{~min} ; v_{\text {max }}(\mathrm{film}) /$ $\mathrm{cm}^{-1} 3355(\mathrm{OH})$ and $1609(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}^{2} \mathrm{CDCl}_{3}\right) 7.8-7.4$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 4.74 (1 H, t, J 7, CHOH), 3.57 (1 H, septet, J 7), $3.55(1 \mathrm{H}$, septet, J 7) $(2 \times \mathrm{NCH}), 2.70(1 \mathrm{H}$, br s, OH), 1.75 (2 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{M}$ e), $1.73(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7), 1.63(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7), 1.05(3 \mathrm{H}, \mathrm{d}$, J 7), $0.94(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)\left[2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$ and $0.91(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 169.5(\mathrm{C}=0), 137.8,133.5$, 133.3, 129.8, 128.9, 128.5, 127.1, 126.6, 125.6, 123.9 (Ar), 73.8 (CHOH), 51.6, $46.7(2 \times \mathrm{NCH})$, $32.2\left(\mathrm{CH}_{2} \mathrm{Me}\right.$ e), 21.4, 21.1, 21.0, $20.8\left[2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$ and $11.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}) 314(30 \%$, $\mathrm{M}+\mathrm{H}$) and 296 (100, $\mathrm{M}-\mathrm{OH}$) (Found: M^{+}, 313.2041. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires M , 313.2042).

A lso obtained was ($\mathrm{R}_{\mathrm{a}}{ }^{*}, \mathrm{I}^{\prime} \mathrm{S}^{*}$)-N,N - diisopropyl-2-(1'-hydroxy-propyl)-1-naphthamide 16a ($\mathrm{R}=\mathrm{Et}$) as an oil, $\mathrm{R}_{\mathrm{f}}[1: 1$ petrol (bp $\left.60-80^{\circ} \mathrm{C}\right)$-EtOAc] 0.47 ; t_{r} (2:1 hexane-EtOAc) 6.5 min ; $v_{\text {max }}$ (film)/ $/ \mathrm{cm}^{-1} 3410(\mathrm{OH})$ and $1605(\mathrm{C}=0) ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 7.9-7.4 (6 H, m, ArH), $4.76(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8,5, \mathrm{CHOH})$, $3.65(2 \mathrm{H}$, septet, J $7,2 \times \mathrm{NCH}), 3.60(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 1.85(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}$), $1.80(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7), 1.73(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)\{\mathrm{N}[\mathrm{CH}-$ $\left.\left.\left(\mathrm{CH}_{3}\right)_{2}\right]^{\mathrm{x}}\right\}, 1.13\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.11(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)$ and 1.09 (3 H, d, J 7) $\left\{\mathrm{N}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]^{\gamma}\right\} ; \delta_{c}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.5$ ($\mathrm{C}=0$) , 135.9, 129.4, 128.8, 128.7, 127.2, 127.0, 126.8, 126.6, $125.4,124.2(\mathrm{Ar}), 73.0(\mathrm{CHOH}), 52.0,47.0(2 \times \mathrm{NCH}), 29.3$ $\left(\mathrm{CH}_{2} \mathrm{Me}\right.$), 21.3, 21.1, 21.0, $20.9\left[2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$ and 11.80 $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}) 314(25 \%, \mathrm{M}+\mathrm{H})$ and 296 (100, $\mathrm{M}-$ OH) (Found: M^{+}, 313.2039. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires M , 313.2042).

($\mathrm{Ra}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \mathrm{R}^{*}$)- and ($\mathrm{R}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \mathbf{S}^{*}$)-N,N-D iethyl-2-($\mathbf{1}^{\prime}$-hydroxypropyl)-1-naphthamide 17b and 17a ($R=E t$)

In the same way, N, N-diethyl-1-naphthamide $13(0.91 \mathrm{~g}, 4$ mmol) and propionaldehyde gave a $22: 78$ mixture of atropisomers 17 b and $17 \mathrm{a}(\mathrm{R}=\mathrm{Et})$, which was purified by flash chromatography [2:1 then $1: 1$ petrol (bp $60-80^{\circ} \mathrm{C}$)-EtOA c] to give $0.866 \mathrm{~g}(76 \%)$ of a $28: 78$ mixture of atropisomers. Separation by preparative HPLC ($1: 1$ hexane-EtOA c) gave ($\mathrm{Ra}_{\mathrm{a}}{ }^{*}, 1^{\prime} \mathrm{R}^{*}$)N, N-diethyl-2-(1'-hydroxypropyl)-1-naphthamide 17b $(\mathrm{R}=\mathrm{Et})$ as a white solid, mp $117-120^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}\left[1: 1\right.$ petrol (bp $60-80^{\circ} \mathrm{C}$)EtOA c] 0.24; $\mathrm{t}_{\mathrm{r}}\left(2: 1\right.$ hexane-EtOAc) $11.7 \mathrm{~min} ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3410(\mathrm{OH})$ and $1608(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.9-7.4(6 \mathrm{H}$, m, ArH), 4.68 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8,6, \mathrm{CHOH}$), $3.74(2 \mathrm{H}, \mathrm{m}), 3.07$ (2 $\mathrm{H}, \mathrm{q}, \mathrm{J} 7)\left(2 \times \mathrm{NCH}_{2}\right), 1.90\left[2 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{Me} \mathrm{e}\right.$, 1.38 (3 $\mathrm{H}, \mathrm{t}, \mathrm{J} 7.5), 1.01(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5)$ and $0.97(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7)$ $\left(3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 170.2(\mathrm{C}=0), 138.8,129.7$, 129.5, 128.9, 128.8, 128.7, 127.4, 126.8, 125.2, 124.2 (Ar), 73.0 $(\mathrm{CHOH}), 43.7,39.2\left(2 \times \mathrm{NCH}_{2}\right), 29.3\left[\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{Me}\right.$], 14.2,
13.3 and $11.4\left(3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}) 286(15 \%, \mathrm{M}+\mathrm{H})$, 268 ($100, \mathrm{M}-\mathrm{OH}$) and 213 ($60, \mathrm{M}-\mathrm{NEt}_{2}$) (Found: M^{+}, 285.1726. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires $\mathrm{M}, 285.1729$).

Also obtained was ($\left.\mathrm{R}_{\mathrm{a}}{ }^{*}, 1^{\prime} \mathrm{S}^{*}\right)$-N,N-diethyl-2-(1'-hydroxy-propyl)-1-naphthamide 17a ($\mathrm{R}=\mathrm{Et}$) as an oil; $\mathrm{R}_{\mathrm{f}}[1: 1$ petrol (bp $60-80^{\circ} \mathrm{C}$)-EtOAc] 0.24; $\mathrm{t}_{\mathrm{r}}(2: 1$ hexane-EtOA c) 15.4 min ; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3410(\mathrm{OH})$ and $1606(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz;CDCl}{ }_{3}\right)$ 7.9-7.4 (6 H , m, ArH), 4.71 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8,6, \mathrm{CH}$ OH), $3.76(2 \mathrm{H}$, q, J 7), $3.40(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.09(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7)\left(2 \times \mathrm{NCH}_{2}\right), 1.90$ $\left[2 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{M}\right.$ e], $1.38(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7), 1.04(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5)$ and $0.99(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7)\left(3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 286(8 \%, \mathrm{M}+\mathrm{H})$, 268 ($35, \mathrm{M}-\mathrm{OH}$) and 213 ($100, \mathrm{M}-\mathrm{NEt}_{2}$) (Found: M^{+}, 285.1735. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires $\mathrm{M}, 285.1729$).

($\mathrm{Ra}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \mathbf{R}^{*}$)- and ($\mathrm{R}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \mathbf{S}^{*}$)-N,N-D iisopropyl-2-($\mathbf{1}^{\prime}$-hydroxy-hexyl)-1-naphthamide 16b and 16a ($\mathrm{R}=\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}$)

 In the same way, N, N-diisopropyl-1-naphthamide $\mathbf{1 0}(0.255 \mathrm{~g}, 1$ mmol) and hexanal (0.2 ml) gave an 18:82 mixture of atropisomers 16b and 16a ($\mathrm{R}=\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}$), which was purified by flash chromatography [$1: 1$ petrol ($\mathrm{bp} 60-80^{\circ} \mathrm{C}$)-EtOAc] to give $0.266 \mathrm{~g}(75 \%)$ of a mixture of atropisomers. Separation by preparative HPLC ($4: 1$ hexane-EtOA c) gave ($\mathrm{R}_{\mathrm{a}}{ }^{*}, 1^{\prime} \mathrm{R}^{*}$)-N,N-diisopropyl-2-(1'-hydroxyhexyl)-1-naphthamide 16b ($\mathrm{R}=\mathrm{n}$ $\mathrm{C}_{5} \mathrm{H}_{11}$) as a white solid, $\mathrm{mp} 98-103^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}[2: 1$ petrol (bp 60$\left.80^{\circ} \mathrm{C}\right)$-EtOA c] $0.43 ; \mathrm{t}_{\mathrm{r}}\left(4: 1\right.$ hexane-EtOAc) $4.6 \mathrm{~min} ; v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 3350(\mathrm{OH})$ and $1609(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.9-7.4$ $(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $4.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8,6, \mathrm{CHOH}), 3.57(2 \mathrm{H}$, septet, $2 \times \mathrm{NCH}), 2.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.85(2 \mathrm{H}, \mathrm{m}, \mathrm{CHOHCH} 2)$, $1.83(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7), 1.65(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)\left\{\mathrm{N}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]^{\mathrm{x}}\right\}, 1.25[6 \mathrm{H}$, $\left.\mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.07(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7), 1.05(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)\left\{\mathrm{N}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]^{\mathrm{Y}}\right\}$ and $0.84\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 169.5$ ($\mathrm{C}=0$), 138.0, 129.0, 128.8, 128.7, 128.5, 127.1, 126.7, 125.8, 125.6, 123.9 (Ar), $72.3(\mathrm{CHOH}), 51.6,46.6(2 \times \mathrm{NCH}), 39.6$, 32.0, 26.1, $23.0\left[\left(\mathrm{CH}_{2}\right)_{4}\right], 21.4,21.3,21.2,21.1\left[2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$ and $14.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 356(10 \%, \mathrm{M}+\mathrm{H})$, 338 (95 , $\mathrm{M}-\mathrm{OH}$) and 256 (100, $\mathrm{M}+\mathrm{H}-\mathrm{NPri}_{2}$) (Found: M^{+}, 335.2518. $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N} \mathrm{O}_{2}$ requires $\mathrm{M}, 355.2511$).A lso obtained was ($\mathrm{a}_{\mathrm{a}}{ }^{*}, 1^{\prime} \mathrm{S}^{*}$)-N,N-diisopropyl-2-(1'-hydroxy-hexyl)-1-naphthamide 16a ($\mathrm{R}=\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}$) as an oil, $\mathrm{R}_{\mathrm{f}}[1: 1$ petrol (bp $60-80^{\circ} \mathrm{C}$)-EtOA c] 0.45 ; $\mathrm{t}_{\mathrm{r}}(4: 1$ hexane-EtOAc) 9.1 min ; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3450(\mathrm{OH})$ and $1606(\mathrm{C}=0) ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 7.9-7.4 (6 H, m, ArH), $4.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9,3, \mathrm{CHOH})$, 3.59 (2 H , septet, $2 \times \mathrm{NCH}$), $2.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.75$ (2 $\mathrm{H}, \mathrm{m}, \mathrm{CHOHCH}$), 1.74 (3 H,d, J 7), 1.69 (3 H, d, J 7) $\left.\left\{\mathrm{N}[\mathrm{CH}) \mathrm{CH}_{3}\right)_{2}{ }^{\mathrm{x}}\right\}, 1.35\left[6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.06(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7), 1.04$ $(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)\left\{\mathrm{N}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]^{\mathrm{Y}}\right\}$ and $0.90\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.8(\mathrm{C}=0), 138.0,136.2,135.0,133.0$, 129.3, 128.7, 127.2, 126.8, 125.3, 124.3 (Ar), 71.3 (CHOH), 51.9, $47.0(2 \times \mathrm{NCH}), 36.1,32.4,27.0,23.1\left[\left(\mathrm{CH}_{2}\right)_{4}\right], 21.3,21.1$, 20.9, $20.8\left[2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$ and $14.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}) 356$ ($10 \%, \mathrm{M}+\mathrm{H}$) and 338 ($100, \mathrm{M}-\mathrm{OH}$) (Found: $\mathrm{M}^{+}, 335.2507$. $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{2}$ requires M , 355.2511).

($\mathbf{R a}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \mathbf{R}^{*}$)- and ($\mathbf{R}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \mathbf{S}^{*}$)-N \mathbf{N} N-D iethyl-2-(1'-hydroxyhexyl)-1naphthamide 17b and 17a ($\mathrm{R}=\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}$)

In the same way, N, N-diethyl-1-naphthamide $\mathbf{1 3}$ ($0.227 \mathrm{~g}, 1$ mmol) and hexanal (0.2 ml) gave a 23:77 mixture of atropisomers 17b and 17a ($\mathrm{R}=\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}$), which was purified by flash chromatography [$1: 1$ petrol ($b p 60-80^{\circ} \mathrm{C}$)-EtOAc] to give $0.278 \mathrm{~g}(85 \%)$ of a $28: 72$ mixture of atropisomers. Separation by preparative HPLC ($1: 1$ hexane-EtOAc) gave ($\mathrm{R}_{\mathrm{a}}{ }^{*}, 1^{\prime} \mathrm{R}^{*}$)-N,N-diethyl-2-(1'-hydroxyhexyl)-1-naphthamide 17b ($\mathrm{R}=\mathrm{n}$ $\mathrm{C}_{5} \mathrm{H}_{11}$) as a white solid, $\mathrm{mp} 67-72^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}[2: 1$ petrol (bp 60$\left.80^{\circ} \mathrm{C}\right)$-EtOA c] $0.29 ; \mathrm{t}_{\mathrm{r}}\left(2: 1\right.$ hexane-EtOAc) $4.6 \mathrm{~min} ; v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 3355(\mathrm{OH})$ and $1609(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 7.9-7.4 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $4.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8,6, \mathrm{CHOH}$), $3.58(2 \mathrm{H}, \mathrm{m})$, $2.89(2 \mathrm{H}, \mathrm{m})\left(2 \times \mathrm{NCH}_{2}\right), 1.78\left[2 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}\right], 1.25[6$ $\mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{M} \mathrm{e]}, 1.20(3 \mathrm{H}, \mathrm{t}, \mathrm{j} 7.5), 1.07(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5)$ and $0.97(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7)\left(3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 170.1$ ($\mathrm{C}=0$) , 134.8, 129.1, 128.8, 128.6, 127.2, 127.0, 126.9, 126.7,
125.6, 123.9 (Ar), $72.5(\mathrm{CHOH}), 51.7,46.7\left(2 \times \mathrm{NCH}_{2}\right), 39.6$, 32.0, 26.2, 23.1 [($\left.\left.\mathrm{CH}_{2}\right)_{4}\right], 21.5,21.1$ and $14.6\left(3 \times \mathrm{CH}_{3}\right)$.

A lso obtained was ($\mathrm{Ra}_{\mathrm{a}}^{*}, 1^{\prime} \mathrm{S}^{*}$)-N ,N-diethyl-2-(1'-hydroxyhex-yl)-1-naphthamide 17a ($\mathrm{R}=\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}$) as an oil; R_{f} [2:1 petrol (bp $60-80^{\circ} \mathrm{C}$)-EtOAc] 0.29 ; t_{r} (2:1 hexane-EtOAc) 6.8 min ; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3340(\mathrm{OH})$ and $\left.1609(\mathrm{C}=0) ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz;CDCl})_{3}\right)$ 7.9-7.4 (6 H, m, ArH), 4.76 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9,3, \mathrm{CHOH}$), 3.56 ($2 \mathrm{H}, \mathrm{m}$) , $2.90(2 \mathrm{H}, \mathrm{m})(2 \times \mathrm{NCH}$) , $1.65[2 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{OH})-$ $\left.\mathrm{CH}_{2}\right], 1.35\left[6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me} \mathrm{e}, 1.10(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5), 1.07(3 \mathrm{H}, \mathrm{t}\right.$, J 7.5) and $0.95(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7)\left(3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 171.1 ($\mathrm{C}=0$), 134.6, 129.1, 128.5, 128.4, 127.2, 127.0, 126.9, 126.7, 125.56, 123.79 (Ar), 71.5 (CHOH), 51.6, $46.8\left(2 \times \mathrm{NCH}_{2}\right)$, $39.5,32.0,26.2,22.1\left[\left(\mathrm{CH}_{2}\right)_{4}\right], 21.4,21.0$ and $13.9\left(3 \times \mathrm{CH}_{3}\right)$.

($\mathrm{Ra}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \mathbf{R}^{*}$)- and ($\mathrm{R}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \mathbf{S}^{*}$)-N,N-D iisopropyl-2-(1'-hydroxy-2'-methylpropyl)-1-naphthamide 16b and 16a ($\mathrm{R}=\mathrm{Pr}^{\text {' }}$)

In the same way, N ,N-diisopropyl-1-naphthamide 10 ($1.02 \mathrm{~g}, 4$ mmol) and isobutyraldehyde gave a 23:77 mixture of atropisomers 16b and 16a ($\mathrm{R}=\mathrm{Pr}^{\prime}$), which was purified by flash chromatography [$4: 1$ petrol (bp 60-80 ${ }^{\circ} \mathrm{C}$)-EtOA cthen EtOA c] to give $1.192 \mathrm{~g}(91 \%)$ of a mixture of atropisomers. Separation by preparative HPLC ($4: 1$ hexane-EtOAc) gave ($\mathrm{Ra}^{*}, 1^{\prime} \mathrm{R}^{*}$)-N,N-diisopropyl-2-(1'-hydroxy-2'-methylpropyl)-1-naphthamide 16b $\left(R=P r^{\prime}\right)$ as a white solid, $m p 136-139{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}[1: 1$ petrol (bp $60-80^{\circ} \mathrm{C}$)-EtOAc] 0.65; t_{r} ($4: 1$ hexane-EtOAc) 5.3 min ; $v_{\text {max }}$ (film)/cm ${ }^{-1} 3410(\mathrm{OH})$ and $1607(\mathrm{C}=0)$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}$; CDCl_{3}) 7.9-7.4 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $4.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.5, \mathrm{CHOH}), 3.59$ (1 H , septet, J 7), $3.55(1 \mathrm{H}$, septet, J 7) $(2 \times \mathrm{NCH}), 2.45(1 \mathrm{H}$, brs, OH), $2.12[2 \mathrm{H}$, octet, J $7, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}$ M e 2], $1.75(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7), 1.65 (3 H, d, J 7), 1.09 ($63 \mathrm{H}, \mathrm{d}, \mathrm{J} 7$), 1.05 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7$), 0.95 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7$) and $0.80(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)\left(6 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}(75 \mathrm{MHz}$; CDCl_{3}) $169.4(\mathrm{C}=0), 136.9,134.2,133.3,129.9,128.8,128.5$, 127.1, 126.7, 125.7, 124.2 (A r), 77.9 (CHOH), 51.5, 46.6 ($2 \times$ $\mathrm{NCH}), 35.7[\mathrm{CH}(\mathrm{OH}) \mathrm{CH}$ M e 2$], 21.5,21.2,21.1,20.8,20.1$ and $18.7\left(6 \times \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 328(25 \%, \mathrm{M}+\mathrm{H})$ and $310(100, \mathrm{M}-$ OH) (Found: $\mathrm{M}^{+}, 327.2203 . \mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{2}$ requires $\mathrm{M}, 327.2198$). A lso obtained was ($\mathrm{Ra}^{*}, 1^{\prime} \mathrm{S}^{*}$)-N ,N -diisopropyl-2-(1'-hydroxy-2'-methylpropyl)-1-naphthamide $16 a\left(R=P r^{i}\right)$ as a white solid, mp $136-139^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}\left[1: 1\right.$ petrol (bp $60-80^{\circ} \mathrm{C}$)-EtOA c] 0.65 ; t_{r} ($4: 1$ hexane-EtOAc) $6.8 \mathrm{~min} ; v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3410(\mathrm{OH})$ and $1608(\mathrm{C}=0) \delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.9-7.4(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.39$ (1 H, d, J 9.5, CHOH), 3.65 (2 H , septet, J 7, $2 \times \mathrm{NCH}$), 3.20 ($1 \mathrm{H}, \mathrm{br}$ s, OH), $2.42\left[2 \mathrm{H}\right.$, dseptet, J $9.5,7, \mathrm{CH}(\mathrm{OH}) \mathrm{CHM} \mathrm{e} \mathrm{e}_{2}$], $1.75(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7), 1.70(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7), 1.22(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7), 1.08(6 \mathrm{H}$, d, J 7) and $0.88(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)\left(6 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 170.3 ($\mathrm{C}=0$), 137.5, 135.8, 133.1, 132.9, 129.2, 128.7, 127.1, 126.8, 125.3, 124.5 (Ar), 76.9 (CHOH), $51.9,46.9(2 \times \mathrm{NCH}$), 31.5 [CH(OH)CHM e $]$, 21.6, 21.1, 21.0, 20.9, 20.4 and 20.2 $\left(6 \times \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 328(15 \%, \mathrm{M}+\mathrm{H})$ and $310(100, \mathrm{M}-\mathrm{OH})$ (Found: $\mathrm{M}^{+}, 327.2192 . \mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{2}$ requires $\mathrm{M}, 327.2198$)

($\mathbf{R a}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \mathbf{R}^{*}$)- and ($\mathbf{R a}^{*}, \mathbf{1}^{\prime} \mathbf{S}^{*}$)-N,N-D iethyl-2-($\mathbf{1}^{\prime}$-hydroxy-2'-methylpropyl)-1-naphthamide 17b and 17a ($\mathrm{R}=\mathrm{Pr}^{\prime}$)

In the same way, N, N-diethyl-1-naphthamide $13(0.227 \mathrm{~g}, 1$ mmol) and isobutyraldehyde gave a 30:70 mixture of atropisomers 17b and 17a ($\mathrm{R}=\mathrm{Pr} \mathrm{r}^{\mathrm{i}}$), which was purified by flash chromatography [$2: 1$ then $1: 1$ petrol (bp $60-80^{\circ} \mathrm{C}$)-EtOAc] to give $0.254 \mathrm{~g}(85 \%)$ of a mixture of atropisomers. Separation by preparative HPLC ($1: 1$ hexane-EtOAc) gave ($\mathrm{Ra}^{*}, 1^{\prime} \mathrm{R}^{*}$)-N,N-diethyl-2-(1'-hydroxy-2'-methylpropyl)-1-naphthamide 17b ($\mathrm{R}=\mathrm{Pr} \mathrm{r}^{\prime}$) as a white solid, $\mathrm{mp} 146-149{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}[1: 1$ petrol (bp 60$\left.80^{\circ} \mathrm{C}\right)$-EtOA c] $0.40 ; \mathrm{t}_{\mathrm{r}}\left(2: 1\right.$ hexane-EtOA c $6.5 \mathrm{~min} ; v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 3400(\mathrm{OH})$ and $1608(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 7.9-7.4$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $4.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{CH} O H), 3.75[1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 14,7$, $\left.\mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)^{\mathrm{x}}\right], 3.63\left[1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 14,7, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)^{\mathrm{x}}\right], 3.06[2 \mathrm{H}$, $\left.\mathrm{ABX}_{3} \mathrm{~m}, \mathrm{~N}\left(\mathrm{CH}_{2}\right)^{\mathrm{r}}\right], 2.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.10[2 \mathrm{H}$, octet, $\mathrm{CH}(\mathrm{OH}) \mathrm{CH} \mathrm{M} \mathrm{e}_{2}$], $1.37\left[3 \mathrm{H}, \mathrm{t}\right.$, J $\left.7.5, \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)^{\mathrm{x}}\right], 1.03(3 \mathrm{H}$, d, J 7, CHM e $\mathrm{A}_{\mathrm{A}} \mathrm{e}_{\mathrm{B}}$), $0.91\left[3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)^{\mathrm{r}}\right]$ and 0.76 ($3 \mathrm{H}, \mathrm{d}$, J 7, CHM éa $\mathrm{M} \mathrm{e}_{\mathrm{B}}$); $\delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 169.7 ($\mathrm{C}=0$), 137.6, 133.2, 132.9, 130.0, 129.2, 128.6, 127.4, 126.7, 125.6,
124.5 (Ar), $78.1(\mathrm{CHOH}), 43.6,39.4\left(2 \times \mathrm{NCH}_{2}\right), 35.5$ ($\mathrm{CHM} \mathrm{e}_{2}$), 20.1, 18.9, 14.5 and $13.3\left(4 \times \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}) 300$ $(20 \%, M+H), 282(75, M-O H)$ and $227\left(100, M-N E t_{2}\right)$ (Found: M^{+}, 299.1885. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires M, 299.1885).
A lso obtained was ($\mathrm{R}_{\mathrm{a}}{ }^{*}, 1^{\prime} \mathrm{S}^{*}$)-N , N - diethyl-2-(1'-hydroxy-2'-methylpropyl)-1-naphthamide 17b ($\mathrm{R}=\mathrm{Pr}^{\mathrm{i}}$) as a white solid, mp $136-142{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}\left[1: 1\right.$ petrol (bp 60-80 ${ }^{\circ} \mathrm{C}$)-EtOA c] 0.40 ; $\mathrm{t}_{\mathrm{r}}(2: 1$ hexane-EtOAc) $9.4 \mathrm{~min} ; v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 3410(\mathrm{OH})$ and 1605 ($\mathrm{C}=0$) ; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.9-7.4$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $4.35(1 \mathrm{H}$, d, J 9, CHOH), $3.83\left[1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 14,7, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)^{\mathrm{x}}\right], 3.75[1 \mathrm{H}$, dq, J 14, 7, N ($\left.\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)^{\mathrm{x}}\right], 3.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.08[2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)^{\mathrm{r}}\right], 2.26\left[2 \mathrm{H}\right.$, octet, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH} \mathrm{M} \mathrm{e}_{2}\right], 1.38[3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)^{\mathrm{x}}\right], 1.08\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{CHM} \mathrm{e}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$), $1.01[3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$, $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)^{\mathrm{r}}$] and $0.80\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{CHM} \mathrm{e}_{\mathrm{A}} \mathrm{M} \mathrm{e}_{\mathrm{B}}\right)$; $\delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) $170.5(\mathrm{C}=0), 138.5,134.0,133.0,129.9,129.6,128.7$, 127.3, 126.8, 125.2, 124.7 (Ar), 77.9 (CHOH), 43.8, 38.9 $\left(2 \times \mathrm{NCH}_{2}\right), 32.6\left(\mathrm{CHM} \mathrm{e}_{2}\right), 20.4,20.0,14.1$ and $13.3\left(4 \times \mathrm{CH}_{3}\right)$; $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 300(15 \%, \mathrm{M}+\mathrm{H}), 282(85, \mathrm{M}-\mathrm{OH})$ and 227 (100 , $\mathrm{M}-\mathrm{NEt}$) (Found: M^{+}-, 299.1886. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires M , 299.1885).

($\mathbf{R}_{1}{ }^{*}, \alpha \mathbf{R}^{*}$)- and ($\mathrm{Ra}_{\mathrm{a}}{ }^{*}, \alpha S^{*}$)-N ,N-D iisopropyl-2-(α-hydroxy-benzyl)-1-naphthamide 16 b and $16 \mathrm{a}(\mathrm{R}=\mathrm{Ph})$

In the same way, N ,N -diisopropyl-1-naphthamide 10 ($1.02 \mathrm{~g}, 4$ mmol) and benzaldehyde (0.5 ml) gave a $72: 28$ mixture of atropisomers 16b and 16a ($\mathrm{R}=\mathrm{Ph}$), which was purified by flash chromatography [$3: 2$ then $1: 1$ petrol ($\mathrm{bp} 60-80^{\circ} \mathrm{C}$)-EtOA c] to give $1.28 \mathrm{~g}(89 \%)$ of a mixture of atropisomers. Separation by preparative HPLC ($4: 1$ hexane-EtOAc) gave ($\mathrm{R}_{\mathrm{a}}{ }^{*}, \alpha \mathrm{R}^{*}$)-N,N-diisopropyl-2-(α-hydroxybenzyl)-1-naphthamide 16b $(\mathrm{R}=\mathrm{Ph})$ as a white solid, $\mathrm{mp} 169-171^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}\left[2: 1\right.$ petrol (bp $40-60^{\circ} \mathrm{C}$)EtOAc] $0.42 ; \mathrm{t}_{\mathrm{r}}\left(4: 1\right.$ hexane-EtOAc) $8.3 \mathrm{~min} ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ $3350(\mathrm{OH})$ and $1606(\mathrm{C}=0)$; $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{H} \mathrm{z;} \mathrm{CDCl} 3) 8.0-7.1(11 \mathrm{H}$, m, ArH), 6.12 (1 H, br s, CH OH), 3.72 (1 H , septet, J 7), 3.68 (1 H, septet, J 7) ($2 \times \mathrm{NCH}$), $2.87(1 \mathrm{H}, \mathrm{br}$ s, OH) $1.83(3 \mathrm{H}$, d, J 7), $1.74(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7), 1.16(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)$ and $1.06(3 \mathrm{H}, \mathrm{d}$, J 7) $\left(4 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 169.2$ ($\mathrm{C}=0$), 143.7, 136.4, 133.7, 132.9, 129.4, 128.8, 128.4, 128.1, 127.2, 126.8, 126.5, 125.8, 125.4, 124.7 (Ar), 73.1 (CHOH), 51.4, 46.3 $(2 \times \mathrm{NCH}), 20.9,20.7,20.6$ and $20.5\left(4 \times \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}) 362$ ($100 \%, \mathrm{M}+\mathrm{H}$) and 344 (Found: $\mathrm{M}^{+}, 361.2048 . \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires M, 361.2042).
Also obtained was ($\left.\mathrm{Ra}_{\mathrm{a}}{ }^{*}, \alpha \mathrm{~S}^{*}\right)$ - N, N-diisopropyl-2-(α-hydroxy-benzyl)-1-naphthamide $16 a(\mathrm{R}=\mathrm{Ph})$ as a sticky white solid, R_{f} [2:1 petrol (bp 40-60 ${ }^{\circ} \mathrm{C}$)-EtOA c] 0.39; t_{r} ($4: 1$ hexane-EtOA c) $17.9 \mathrm{~min} ; v_{\text {max }}(f i l m) / \mathrm{cm}^{-1} 3418(\mathrm{OH})$ and $1606(\mathrm{C}=0) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz} \mathrm{CDCl}_{3}$) 7.9-7.1 ($11 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 6.17 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}$), 3.3-3.1 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}$), 1.83 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7$), 1.76 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7$), $1.18(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)$ and $1.07(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7)\left(4 \times \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 170.4(\mathrm{C}=0), 141.5,137.9,135.0,132.8,129.1,128.7$, 128.3, 127.4, 127.0, 126.9, 126.6, 125.7, 124.9 (Ar), 72.7 $(\mathrm{CHOH}), 51.7,46.6(2 \times \mathrm{NCH}), 21.0,20.7,20.6$ and 20.5 $\left(4 \times \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 362(8 \%, \mathrm{M}+\mathrm{H}), 346$ and 344 (Found: $\mathrm{M}^{+}, 361.2048 . \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N} \mathrm{O}_{2}$ requires M , 361.2042).

$\left(\mathbf{R}_{\mathrm{a}}{ }^{*}, \boldsymbol{\alpha} \mathbf{R}^{*}\right)$ - and ($\left.\mathbf{R}_{\mathrm{a}}{ }^{*}, \boldsymbol{\alpha} \mathbf{S}^{*}\right)$-N ,N-D iethyl-2-(α-hydroxybenzyl)-1naphthamide 17b and 17a ($\mathrm{R}=\mathrm{Ph}$)

In the same way, N,N-diethyl-1-naphthamide 13 ($0.91 \mathrm{~g}, 4$ mmol) and benzaldehyde (0.5 ml) gave a $51: 49$ mixture of atropisomers 17b and 17a ($\mathrm{R}=\mathrm{Ph}$) which was crystallised from ethyl acetate to give almost pure $17 \mathrm{a}(\mathrm{R}=\mathrm{Ph})(0.261 \mathrm{~g}, 20 \%)$. The mother liquors were purified by flash chromatography [$3: 2$ then 1:1 petrol (bp $60-80^{\circ} \mathrm{C}$)-EtOA c] to give a further 0.872 g (65\%) of a mixture of atropisomers. Separation by preparative HPLC (4:1 hexane-EtOA c) gave ($\left.\mathrm{Ra}_{\mathrm{a}}{ }^{*}, \alpha \mathrm{R}^{*}\right)$-N ,N - diethyl-2-(α -hydroxybenzyl)-1-naphthamide $\mathbf{1 7 b}(\mathrm{R}=\mathrm{Ph})$ as a white solid, $m p 141-143{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.63 ; \mathrm{t}_{\mathrm{r}}(4: 1$ hexane-EtOAc) 11.7 $\min ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3416(\mathrm{OH})$ and $1610(\mathrm{C}=0) ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 8.0-7.1 ($11 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $6.03(1 \mathrm{H}, \mathrm{brs}, \mathrm{CHOH}), 3.75$ $\left[1 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)^{\mathrm{x}}\right], 3.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.52[1 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)^{\mathrm{x}}\right], 3.02\left[1 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)^{\mathrm{Y}}\right], 2.77[\mathrm{H}, \mathrm{dq}, \mathrm{J} 14$ and $\left.7, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)^{\mathrm{r}}\right], 1.38(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7)$ and $0.92(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7)$ $\left(2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 169.7(\mathrm{C}=0)$, 143.5, 137.9, 132.7, 132.6, 129.6, 129.3, 128.2, 128.1, 127.1, 127.0, 126.5, 125.8, 125.7 (Ar), $74.7(\mathrm{CH} \mathrm{OH}), 43.6,39.2\left(2 \times \mathrm{CH}_{2}\right), 13.6$ and $13.0\left(2 \times \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 334(100 \%, \mathrm{M}+\mathrm{H})$ and $318(\mathrm{M}-$ CH_{3}) (Found: $\mathrm{M}^{+}, 333.1733 . \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires $\mathrm{M}, 333.1729$).

A lso obtained was ($\mathrm{Ra}_{\mathrm{a}}^{*}, \alpha \mathrm{~S}^{*}$)-N,N-diethyl-2-(α-hydroxybenz-yl)-1-naphthamide 17a ($\mathrm{R}=\mathrm{Ph}$) as a white solid, mp 125$127^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.58 ; \mathrm{t}_{\mathrm{r}}(4: 1$ hexane-EtOAc) 27.7 min ; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3414(\mathrm{OH})$ and $1609(\mathrm{C}=0) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; CDCl_{3}) 7.9-7.2 ($11 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $6.10(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 4.00$ (1 $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.81\left[1 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)^{\mathrm{x}}\right], 3.69[1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)^{\mathrm{x}}\right]$], $2.99\left[1 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)^{\mathrm{r}}\right], 2.88[1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)^{\mathrm{r}}\right], 1.95(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7)$ and $0.93(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7)\left(2 \times \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 170.0(\mathrm{C}=0), 141.8,138.3,133.1,132.6$, 129.1, 129.0, 128.4, 128.3, 127.5, 127.2, 126.4, 125.0, 124.7 (Ar), 72.9 (CHOH) $, 43.4,39.1\left(2 \times \mathrm{CH}_{2}\right), 13.7$ and $13.0(2 \times$ CH_{3}) m/z (CI) $334(31 \%, \mathrm{M}+\mathrm{H}), 318$ and 316 (Found: M^{+}, 333.1724. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N} \mathrm{O}_{2}$ requires $\mathrm{M}, 333.1729$).

1-P ropylbutylamine 18

A solution of heptan-4-one ($2.5 \mathrm{ml}, 17.909 \mathrm{mmol}$), ammonium acetate ($13.809 \mathrm{~g}, 179.087 \mathrm{mmol}$) and sodium cyanoborohydride ($0.790 \mathrm{~g}, 11.943 \mathrm{mmol}$) in absolute methanol (54 ml) was stirred for 72 h at $25^{\circ} \mathrm{C}$. Concentrated hydrochloric acid was then added until the pH was $<2(15 \mathrm{ml})$ and then the methanol was removed under reduced pressure. The residue was taken up in water (50 ml) and extracted with three portions (40 ml) of ether. The aqueous solution was brought to $\mathrm{pH}>10$ with solid potassium hydroxide, saturated with sodium chloride, and extracted with five portions (30 ml) of ether. The combined extracts were dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give pure 1-propylbutylamine as a colourless oil ($1.606 \mathrm{~g}, 78 \%$), bp $142{ }^{\circ} \mathrm{C}$ (lit., ${ }^{66} 139-140^{\circ} \mathrm{C}$); $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 3366 and 3299; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.65\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{H}_{2} \mathrm{CCH}\right)$, 1.4-1.1 [8 H, m, $\left.\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 0.84(6 \mathrm{H}, \mathrm{t}$, J 2 , $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 50.6,40.4,19.3$ and $14.2 ; \mathrm{m} / \mathrm{z}(\mathrm{CI})$ $116\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right.$) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 116.1442. $\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{~N}$ requires $M+H, 116.1439)$.

B is(1-propylbutyl)amine 19

5 m HCl -methanol ($2.26 \mathrm{ml}, 11.261 \mathrm{mmol}$), heptan-4-one (3.92 $\mathrm{ml}, 28.152 \mathrm{mmol}$) and sodium cyanoborohydride (298 mg , 4.504 mmol) were added to a solution of freshly distilled 1 propylbutylamine 18 ($1.295 \mathrm{~g}, 11.261 \mathrm{mmol}$) in absolute methanol (13 ml). The solution was stirred at $25^{\circ} \mathrm{C}$ for 6 days. Concentrated hydrochloric acid was added until the pH was <2 (15 ml) and then the methanol was removed under reduced pressure. The residue was taken up in water (50 ml) and extracted with three portions (40 ml) of ether. The aqueous solution was brought to $\mathrm{pH}>10$ with solid potassium hydroxide, saturated with sodium chloride, and extracted with five portions (30 ml) of diethyl ether. The combined extracts were dried ($\mathrm{M} \mathrm{SSO}_{4}$) and evaporated under reduced pressure to give a mixture of 1-propylbutylamine and the required product. Distillation by Kugelrohr afforded pure amine 19 as a colourless oil ($1.463 \mathrm{~g}, 61 \%$), bp $159-160^{\circ} \mathrm{C}$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3370$ and 3308 ; $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.46(2 \mathrm{H}, \mathrm{br} \mathrm{m}, 2 \mathrm{NCH}), 1.29(16 \mathrm{H}, \mathrm{m}$, $4 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$) and 0.88 ($12 \mathrm{H}, \mathrm{m}, 4 \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}(75 \mathrm{MHz}$; CDCl_{3}) $54.0,37.0,18.7$ and $14.3 ; \mathrm{m} / \mathrm{z}$ (Cl) 214 (100%, $\mathrm{M}+\mathrm{H}^{+}$); m/z (EI) 170 ($81 \%, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}$) (Found: M^{+}, 213.2459. $\mathrm{C}_{14} \mathrm{H}_{31} \mathrm{~N}$ requires $\mathrm{M}, 213.2456$).

$\mathrm{N}, \mathrm{N}-\mathrm{B}$ is(1-propylbutyl)-1-naphthamide 20

Triethylamine ($0.62 \mathrm{ml}, 4.46 \mathrm{mmol}$) was added to a solution of naphthoyl chloride ($0.45 \mathrm{ml}, 2.972 \mathrm{mmol}$) in diethyl ether (8 ml) at $0^{\circ} \mathrm{C}$. A fter 10 min , a solution of bis(1-propylbutyl)amine 19 ($633 \mathrm{mg}, 2.972 \mathrm{mmol}$) in ether (8 ml) as added dropwise over 15 min . The reaction vessel was warmed to room temperature and stirred for a further 2 h , then refluxed overnight. The solution
was then diluted with water (20 ml) and extracted with three portions (10 ml) of ether. The combined organic phases were washed with two (30 ml) portions of aqueous 1 m hydrochloric acid, two portions (30 ml) of saturated aqueous sodium hydrogen carbonate, water (30 ml) and then dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$. The solvent was removed under reduced pressure and the residue was purified by column chromatography [10:1 petrol (bp 40$60^{\circ} \mathrm{C}$)-ethyl acetate] to afford the amide $20(760 \mathrm{mg}, 70 \%)$ as white needles, $m p 71-74^{\circ} \mathrm{C}$; R_{f} [petrol (bp $40-60^{\circ} \mathrm{C}$)-EtOAC (10:1)] 0.26; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1624.9$ ($\mathrm{C}=0$); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; CDCl_{3}) 7.94-7.76 (3 H, m, ArH), 7.50-7.30 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 3.20 (1 H , quintet, J $6.6, \mathrm{NCH}$ cis to $\mathrm{C}=0$), $2.98(1 \mathrm{H}$, br m, NCH trans to $\mathrm{C}=0)$, $2.42\left(1 \mathrm{H}, \mathrm{m}\right.$, trans $\left.\mathrm{NCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 2.15-2.00 ($2 \mathrm{H}, \mathrm{m}$, trans $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.93(1 \mathrm{H}, \mathrm{m}$, trans $\mathrm{NCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.55-1.30 ($7 \mathrm{H}, \mathrm{m}$, cis $\mathrm{NCHCH}_{2}-$ $\mathrm{CH}_{2} \mathrm{CH}_{3} \times 2, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{NCHCH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}$), 1.25 ($2 \mathrm{H}, \mathrm{m}$, cis $\mathrm{NCHCH}_{2} \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}$, trans $\mathrm{NCHCH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}$), $1.14\left(1 \mathrm{H}, \mathrm{m}\right.$, cis $\left.\mathrm{NCHCH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}\right), 0.97(1 \mathrm{H}, \mathrm{m}$, cis $\left.\mathrm{NCHCH}_{2} \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3\right.$, trans $\left.\mathrm{CH}_{3}\right), 0.98(3 \mathrm{H}$, t, J 7.3, trans CH_{3}), $0.85\left(1 \mathrm{H}, \mathrm{m}\right.$, cis $\left.\mathrm{NCHCH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}\right)$, $0.74\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9\right.$, cis $\left.\mathrm{CH}_{3}\right)$ and $0.38\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1\right.$, cis $\left.\mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 166.5,131.7,129.1,125.4,123.9,123.7$, 121.8, 121.7, 121.0, 120.3, 118.9, 55.2, 52.0, 32.6, 31.7, 31.1, $30.4,17.2,15.6,10.1,10.0,9.5$ and $8.9 ; \mathrm{m} / \mathrm{z}$ (CI) 368 (100%, $\mathrm{M}+\mathrm{H}^{+}$) and $155\left[\mathrm{M}-\mathrm{N}\left(\mathrm{C}_{7} \mathrm{H}_{15}\right)_{2}\right] ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 367\left(5 \%, \mathrm{M}^{+}\right)$and 155 (100, [M - N ($\left.\mathrm{C}_{7} \mathrm{H}_{15}\right)_{2}$] (F ound: C, 82.04; H, 9.33; N, 3.88\%. $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{NO}$ requires $\mathrm{C}, 81.7 ; \mathrm{H}, 10.1 ; \mathrm{N}, 3.8 \%$). A ssignments in the NMR spectrum were made by COSY.

(D icyclohex yl)methylamine 21

A solution of dicyclohexyl ketone ($13.07 \mathrm{ml}, 66.335 \mathrm{mmol}$), ammonium acetate ($51.148 \mathrm{~g}, 663.340 \mathrm{mmol}$) and sodium cyanoborohydride ($2.926 \mathrm{~g}, 44.237 \mathrm{mmol}$) in absolute methanol (200 ml) was stirred for 6 days at $25^{\circ} \mathrm{C}$, then worked up as for 1propylbutylamine 18 to give pure (dicyclohexyl)methylamine 21 ($8.149 \mathrm{~g}, 63 \%$) as a colourless oil, bp $210^{\circ} \mathrm{C}$; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3387$ and 3318; $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.22\left(1 \mathrm{H}, \mathrm{t}\right.$, J $\left.5.5, \mathrm{H}_{2} \mathrm{NCH}\right)$ and 1.84-0.92 ($22 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}_{6} \mathrm{H}_{11}$); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $60.8,40.0,30.7,27.6,26.6,26.5$ and $26.3 ; \mathrm{m} / \mathrm{z}$ (CI) 196 (100\%, M $+\mathrm{H}^{+}$) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 196.2071. $\mathrm{C}_{14} \mathrm{H}_{31} \mathrm{~N}$ requires $M+H, 196.2065)$.

Lithiation of $\mathbf{2 0}$ with sec-butyllithium-TM EDA

sec-Butyllithium (0.62 ml of 1.3 m solution in cyclohexane, 0.809 mmol) was added to a stirred solution of TM EDA (0.12 $\mathrm{ml}, 0.809 \mathrm{mmol}$) in THF (3.8 ml) under an atmosphere of nitrogen at $-78^{\circ} \mathrm{C}$. A fter stirring for 10 min , a solution of N, N -bis(1-propylbutyl)-1-naphthamide 20 ($243 \mathrm{mg}, 0.662 \mathrm{mmol}$) in TH F (1.9 ml) was added. A fter a further 80 min at $-78^{\circ} \mathrm{C}$ a solution of DM F (1 ml , excess) in THF (0.9 ml) was added. The mixture was allowed to warm to ambient temperature and water (5 ml) was added. The THF was removed under reduced pressure and the mixture extracted with dichloromethane $(3 \times 15 \mathrm{ml})$. The combined organic fractions were washed with brine and then dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$. The solvent was removed under reduced pressure and the residue was purified by column chromatography [$10: 1$ petrol (bp $40-60^{\circ} \mathrm{C}$)-ethyl acetate] to afford N,N-bis(1-propylbutyl)-2-(1-methylpropyl)-1,2-dihydro-naphthalene-1-carboxamide 23 ($115 \mathrm{mg}, 41 \%$) as a mixture of diastereoisomers, R_{f} [petrol (bp 40-60 ${ }^{\circ} \mathrm{C}$)-EtOA c (10:1)] 0.42; $v_{\text {max }}$ (film)/ $/ \mathrm{cm}^{-1} 1642 ; \delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) (signals for major diastereoisomer) 7.3-7.0 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $6.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.8$ and 9.8, $\mathrm{ArCH}=\mathrm{CH}), 5.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.9,4.1), 4.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7.8, CHCONR 2), 3.71 (1 H , quintet, J $6.5, \mathrm{NCH}$), 2.95-2.80 $(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$ and $\mathrm{ArCH}=\mathrm{CHCH}), 2.24-0.88\{34 \mathrm{H}, \mathrm{m}$, $\mathrm{N}\left[\mathrm{CH}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2}\right]_{2}$ and $\left.\mathrm{CHMeCH} \mathrm{CH}_{3}\right\}$ and $0.84(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7$, $\mathrm{CHCH}_{3} \mathrm{Et}$); $\delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) (signals for major diasteroisomer) 173.1, 134.0, 133.8, 127.9, 127.7, 127.0, 127.0, 126.9, $126.8,126.1,58.6,56.8,45.9,41.9,38.8,37.2,36.7,36.3,35.6$, $27.6,21.6,21.5,20.7,20.6,15.3,14.4,14.2$ and $12.1 ; \mathrm{m} / \mathrm{z}$ (CI)
$426\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 425\left(100 \%, \mathrm{M}^{+}\right)$and 368 (72%, $\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}$) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 425.3656. $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{NO}$ requires M + H, 425.3657)

A lso obtained was 2 -formyl-N ,N-bis(1-propylbutyl)-1-naphthamide 24 ($116 \mathrm{mg}, 44 \%$) as an oil, R_{f} [petrol bp ($40-60^{\circ} \mathrm{C}$)EtOA c (10:1)] 0.19; $v_{\text {max }}$ (film)/cm ${ }^{-1} 1691$ and 1615; $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{H} \mathrm{z}^{\prime}\right.$ CDCl_{3}) $10.35(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.07-7.47(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.06$ (1 H , br m, cis NCH), $2.90(1 \mathrm{H}$, quintet, J 6.1, trans NCH), 2.532.23 ($2 \mathrm{H}, \mathrm{m}$, cis NCHCH $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.13-1.87 (2 H , m, cis $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.59-1.21\left(8 \mathrm{H}, \mathrm{m}, 2 \times\right.$ cis NCHCH_{2} $\mathrm{CH}_{2} \mathrm{CH}_{3}, 2 \times$ trans $\left.\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.17-0.67(4 \mathrm{H}, \mathrm{m}$, $2 \times$ trans $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.05 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3$, cis CH_{3}), 0.99 $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{cis} \mathrm{CH}_{3}\right), 0.64\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4\right.$, trans $\left.\mathrm{CH}_{3}\right)$ and $0.30(3$ $\mathrm{H}, \mathrm{t}, \mathrm{J} 7.3$, trans CH_{3}); $\delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 190.5, 167.6, 142.1, $136.1,129.3,129.2,129.1,128.8,128.3,127.1,126.6,121.9$, $60.0,57.3,36.9,36.7,35.5,34.9,21.7,20.2,20.0,14.4,14.4,13.5$ and 13.0; m/z (CI) 396 (51\%, M + H) and 368 (100, M - OH); $\mathrm{m} / \mathrm{z}(\mathrm{EI}) 395\left(4 \%, \mathrm{M}^{+}\right)$and 155 (100) (Found: $\mathrm{M}^{+}, 395.2826$. $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NO}_{2}$ requires M , 395.2824).

L ithiation of $\mathbf{2 0}$ with sec-butyllithium, without TM E DA present In the same way as above, but without TM EDA , amide 20 (240 $\mathrm{mg}, 0.66 \mathrm{mmol}$) gave aldehyde $\mathbf{2 4}$ ($99 \mathrm{mg}, \mathbf{4 0 \%}$) and amide 23 ($147 \mathrm{mg}, 55 \%$).

($\mathbf{R a}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \mathbf{R}^{*}$)- and ($\left.\mathbf{R a}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \mathbf{S}^{*}\right)-\mathrm{N}, \mathrm{N}-\mathrm{B}$ is(1-propylbutyl)-2-(1'-hydroxyethyl)-1-naphthamide 25b and 25a ($R=M$ e)

tert-Butyllithium (0.71 ml of a 1.7 m solution in pentane, 1.203 $\mathrm{mmol})$ was added to a solution of naphthamide $20(368 \mathrm{mg}$, 1.003 mmol) in THF (15 ml) under an atmosphere of nitrogen at $-78^{\circ} \mathrm{C}$. A fter 30 min , the solution had turned brown and acetaldehyde (1 ml , excess) was added. A fter 30 min , the reaction was quenched with saturated aqueous ammonium chloride (5 ml). The mixture was then diluted with water (10 ml) and extracted with dichloromethane ($3 \times 15 \mathrm{ml}$) and then dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$. Purification by preparative HPLC afforded $\quad\left(R_{a}{ }^{*}, 1^{\prime} R^{*}\right)-N, N-b i s(1-p r o p y l b u t y l)-2-\left(1^{\prime}-\right.$ hydroxyeth-yl)-1-naphthamide 25b ($R=M$ e) ($56 \mathrm{mg}, 14 \%$) as an oil, R_{f} [petrol (bp $40-60^{\circ} \mathrm{C}$)-EtOAc (2:1)] 0.57; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3391$ and 1606; $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 7.9-7.7 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 5.18 (1 $\mathrm{H}, \mathrm{q}, \mathrm{J} 6.3, \mathrm{CHOH}), 3.03(2 \mathrm{H}$, quintet, J 7.3, $2 \times \mathrm{NCH}$), 2.37 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.08(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}-$ $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.00-0.94 ($11 \mathrm{H}, \mathrm{m}$), $1.54(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5$, $\left.\mathrm{COHCH}_{3}\right), 0.93-0.58(2 \mathrm{H}, \mathrm{m}), 1.05\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{3}\right), 1.01(3$ $\left.\mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{3}\right), 0.74\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{CH}_{3}\right)$ and $0.36(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3$, CH_{3}); $\delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 169.4,139.2,132.6,131.6,129.2$, 128.7, 127.9, 126.2, 125.9, 125.5, 122.8, 68.2, 60.0, 56.7, 36.9, $36.9,36.0,35.5,26.2,21.8,20.3,20.2,14.4,14.4,14.0$ and 13.2 ; $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 412\left(63 \%, \mathrm{M}+\mathrm{H}^{+}\right), 396\left(100, \mathrm{M}-\mathrm{CH}_{3}\right)$ and 394 (49, $\mathrm{M}-\mathrm{OH}$) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 412.3218. $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NO}_{2}$ requires M + H, 412.3215)
Also obtained was ($\left.\mathrm{Ra}^{*}, 1^{\prime} \mathrm{S}^{*}\right)-\mathrm{N}, \mathrm{N}$-bis(1-propylbutyl)-2-(1'-hydroxyethyl)-1-naphthamide $\mathbf{2 5 a}(\mathrm{R}=\mathrm{M}$ e) $(83 \mathrm{mg}, 21 \%)$ as an oil, $\mathrm{R}_{\mathrm{f}}\left[\right.$ petrol bp $\left.\left(40-60^{\circ} \mathrm{C}\right)-E t O A c(2: 1)\right] 0.50 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 3426 and 1604; $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 7.92-7.82(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.67 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{ArH}$), $7.58-7.47(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.18(1 \mathrm{H}, \mathrm{q}$, $\mathrm{J} \mathrm{CHOH}), 3.17-3.00(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 2.50-2.32(2 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{NCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.22-2.07 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH} \mathrm{A}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.70(3 \mathrm{H}, \mathrm{d}$, J $\left.6.5, \mathrm{COHCH}_{3}\right), 1.68-0.80(11 \mathrm{H}, \mathrm{m}), 1.09\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{3}\right)$, $1.05\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{CH}_{3}\right), 0.60\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2, \mathrm{CH}_{3}\right), 0.65(1 \mathrm{H}, \mathrm{m})$ and $0.50\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 171.0,138.7$, 133.8, 132.5, 129.3, 129.0, 128.1, 128.0, 126.3, 126.2, 125.0, $122.8,66.6,60.3,57.1,36.9,36.8,36.3,35.2,21.8,21.7,20.3$, 20.2, 19.5, 14.4, 14.4, 13.7 and $13.4 ; \mathrm{m} / \mathrm{z}$ (CI) 412 (100%, $\mathrm{N}+\mathrm{H}^{+}$) and 394 (94, $\mathrm{M}-\mathrm{OH}$); m/z (EI) 411 ($7 \% \mathrm{M}^{+}$) (Found: M^{+}, 411.3141. $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NO}_{2}$ requires $\mathrm{M}, 411.3137$).
A Iso obtained was starting material 20 ($147 \mathrm{mg}, 40 \%$) and NMR of the crude reaction mixture showed the presence of 1-tert-butylethanol.
$\left(R_{a}{ }^{*}, \alpha R^{*}\right)-$ and $\left(R_{a}{ }^{*}, \alpha S^{*}\right)-N, N-B$ is(1-propylbutyl)-2-(α -
hydroxybenzyl)-1-naphthamide 25b and $25 \mathrm{a}(\mathbf{R}=\mathbf{P h})$ In the same way, naphthamide 20 (188 mg) gave ($\mathrm{R}_{\mathrm{a}}{ }^{*}, \alpha \mathrm{R}^{*}$)-N,N-bis(1-propylbutyl)-2-(α-hydroxybenzyl)-1-naphthamide 25b ($\mathrm{R}=\mathrm{Ph}$) (26 mg, 11\%), R_{f} [petrol (bp $\left.40-60^{\circ} \mathrm{C}\right)$-EtOA c (2:1)] $0.75 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3415$ and $1606 ; \delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz}^{2} \mathrm{CDCl}_{3}\right) 7.97-$ 7.18 ($11 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 6.21 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{OH}$), 3.25-3.03 ($2 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{NCH}), 2.57-2.37\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OH}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.15$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}_{\mathrm{A}}-\right.$ $\left.\mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.73-0.73(12 \mathrm{H}, \mathrm{m}), 1.11\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{3}\right), 1.03$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{3}\right), 0.84\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{CH}_{3}\right)$ and $0.42(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 7.3, CH_{3}); $\delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right)$ 169.6, 143.8, 137.0, 132.7, 132.6, 129.3, 128.8, 128.3, 127.9, 127.1, 126.3, 126.2, 125.9, 125.7, 124.1, 72.8, 60.2, 56.9, 37.0, 36.9, 36.2, 35.6, 21.9, 21.8, 20.4, $20.3,14.5,14.5,14.1$ and $13.3 ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}) 474\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$ and $456(50, \mathrm{M}-\mathrm{OH})$; m/z (EI) $473\left(5 \%, \mathrm{M}^{+}\right)$(Found: M^{+}, 473.3289. $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N} \mathrm{O}_{2}$ requires $\mathrm{M}, 473.3294$).

Also obtained was ($\left.\mathrm{Ra}_{\mathrm{a}}{ }^{*}, \alpha S^{*}\right)-\mathrm{N}, \mathrm{N}$-bis(1-propylbutyl)-2-(α -hydroxybenzyl)-1-naphthamide 25a ($\mathrm{R}=\mathrm{Ph}$) ($60 \mathrm{mg}, 25 \%$), mp $148-150^{\circ} \mathrm{C}$ [petrol bp ($40-60^{\circ} \mathrm{C}$)-EtOA c (2:1)] 0.73; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3393$ and $1601 ; \delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0$, ArH), 7.82 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6, \mathrm{ArH}$), $7.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{ArH}$), $7.58-$ $7.34(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{ArH}), 6.20(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CHOH}), 4.55(1 \mathrm{H}, \mathrm{br}$ s, OH), $3.22(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 3.15(1 \mathrm{H}$, $\mathrm{m}, \mathrm{NCH}), 2.54-2.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.21(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.72\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.65-0.6(11 \mathrm{H}, \mathrm{m}), 1.09(3$ $\left.\mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{3}\right), 0.76\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{CH}_{3}\right)$ and $0.58\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 474$ ($60 \%, \mathrm{M}+\mathrm{H}^{+}$) and 456 ($100, \mathrm{M}-\mathrm{OH}$); m/z (EI) 473 (5\%, M^{+}) (Found: M^{+}, 473.3283. $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{NO}_{2}$ requires $\mathrm{M}, 473.3294$). Also obtained was 1-(tert-butyl)benzyl alcohol (7 mg) and starting material 20 ($88 \mathrm{mg}, 47 \%$).

C rystal structure determination of $\mathbf{1 6 b}(\mathbf{R}=\mathrm{Ph})$

D ata collection. A colourless tabular crystal of $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N} \mathrm{O}_{2}$ having approximate dimensions of $0.20 \times 0.30 \times 0.45 \mathrm{~mm}$ was mounted on a glass fibre. All measurements were made on a Rigaku AFC5R diffractometer with graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation and a 12 kW rotating anode generator.
Cell constants and an orientation matrix for data collection, obtained from a least-squares refinement using the setting angles of 20 carefully-centred reflections in the range $50.80<2 \theta<59.35^{\circ}$ corresponded to a monoclinic cell within dimensions: $a=10.732(8) \AA, b=18.870(4) \AA, c=11.126(3) \AA$, $\beta=112.62(2)^{\circ}, V=2080(1) \AA^{3}$. For $Z=4$ and $M=361.48$, $D_{c}=1.154 \mathrm{~g} \mathrm{~cm}^{-3}$. Based on the systematic absences of: hol: $\mathrm{I} \neq 2 \mathrm{n}, 0 \mathrm{k} 0: \mathrm{k} \neq 2 \mathrm{n}$ and the successful solution and refinement of the structure, the space group was determined to be $P 2_{1} / \mathrm{c}(\# 14)$.

The data were collected at a temperature of $23 \pm 1^{\circ} \mathrm{C}$ using the $\omega-2 \theta$ scanning technique to a maximum 2θ value of 120.1°. Omega scans of several intense reflections, made prior to data collection, had an average width at half-height of 0.22° with a take-off angle of 6.0°. Scans of $(1.10+0.30 \tan \theta)^{\circ}$ were made at a speed of $32.0^{\circ} \mathrm{min}^{-1}$ (in omega). The weak reflections [$1<10.0 \sigma(\mathrm{I})$] were rescanned (maximum of two rescans) and the counts were accumulated to assure good counting statistics. Stationary background counts were recorded on each side of the reflection. The ratio of peak counting time to background counting time was $2: 1$. The diameter of the incident beam collimator was 0.5 mm and the crystal to detector distance was 400.0 mm .
D ata reduction. Of the 3401 reflections which were collected, 3213 wereunique ($\mathrm{R}_{\text {int }}=0.048$). Theintensities of three representative reflections which were measured after every 150 reflections declined by 2.04\%. A linear correction factor was applied to the data to account for this phenomenon.
The linear absorption coefficient for $\mathrm{Cu}-\mathrm{K} \alpha$ is $5.4 \mathrm{~cm}^{-1}$. An empirical absorption correction, based on azimuthal scans of several reflections, was applied which resulted in transmission factors ranging from 0.94 to 1.00 . The data were corrected for

Lorentz and polarization effects. A correction for secondary extinction was applied (coefficient $=0.29391 \times 10^{-7}$),

Structure solution and refinement. The structure was solved by direct method. ${ }^{67}$ The non-hydrogen atoms were refined anisotropically. The hydrogen atoms except H 1 , were included in the structure factor calculation in idealized positions ($\mathrm{C}-\mathrm{H}$ $=0.95 \AA$), and were assigned isotropic thermal parameters which were 20% greater than the equivalent B value of the atom to which they were bonded. H 1 was located in a difference Fourier map, and fixed at that position. The short contact between 01 and 02 from another molecule indicates hydrogen bonding interactions. The final cycle of full-matrix least-squares refinement was based on 2133 observed reflections [l>3.00 $\quad(I)$] and 245 variable parameters and converged (largest parameter shift was <0.01 times its esd) with unweighted agreement factors of: $R=\Sigma| | F_{o}\left|-\left|F_{c}\right| / \Sigma\right| F_{o} \mid=0.058, \quad R_{w}=\left[\left(\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \Sigma w-\right.\right.$ $\left.\left.\mathrm{F}_{0}{ }^{2}\right)\right]^{\frac{1}{2}}=0.076$.
The standard deviation of an observation of unit weight was 2.23. The weighting scheme was based on counting statistics and included a factor ($p=0.03$) to downweight the intense reflections. Plots of $\Sigma \mathrm{w}\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2}$ versus $\left|\mathrm{F}_{\mathrm{o}}\right|$, reflection order in data collection, $\sin \theta / \lambda$, and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.17 and $-0.15 \mathrm{e}^{-}$ \AA^{-3}, respectively.
N eutral atom scattering factors were taken from Cromer and Waber. ${ }^{68}$ A nomalous dispersion effects were included in $F_{c}{ }^{\text {c }}{ }^{69}$ the values for Δf^{\prime} and Δf " were those of C romer. ${ }^{70} \mathrm{All}$ calculations were performed using the TEXSAN crystallographic software package of M olecular Structure C orporation.

Acknowledgements

We thank the EPSRC and Roche Products Ltd for a CASE studentship (to N. W.), G laxo-Wellcome for donation of HPLC equipment and the University of M anchester for assistance through the Research Support F und.

References

1 P. Beak and R. A. Brown, J. Org. Chem., 1982, 47, 34.
2 V. Snieckus, Chem. Rev., 1990, 90, 879.
3 M. A sami and T. M ukaiyama, Chem. Lett., 1980, 17.
4 A. I. M eyers, M. A. Hanagan, L. M. Trefonas and R. J. Baker, Tetrahedron, 1983, 39, 1991.
5 P. Beak, A. Tse, J. H awkins, C. W. Chen and S. M ills, Tetrahedron, 1983, 39, 1983.
6 D. A. Price, N. S. Simpkins, A. M. M acL eod and A. P. Watt, Tetrahedron Lett., 1994, 35, 6159.
7 D. A. Price, N. S. Simpkins, A . M . M cL eod and A. P. Watt, J. Org. Chem., 1994, 59, 1961.
8 E. P. K ündig and A. Quattropani, Tetrahedron Lett., 1994, 35, 3497.
9 M. U emura, Y. H ayashi and Y. H ayashi, Tetrahedron: A symmetry, 1994, 5, 1427.
10 H.-G. Schmaltz and K. Schellhaas, Tetrahedron Lett., 1995, 36, 5515
11 D. A . Price and N. S. Simpkins, Tetrahedron L ett., 1995, 36, 6135.
12 S. G. D avies and W. E. H ume, J. Chem. Soc., Chem. Commun., 1995, 251.

13 Y. K ondo, J. R. G reen and J. H o, J. Org. C hem., 1993, 58, 6182.
14 J. Aubé, J. A. Heppert, M. L. Milligan, M. J. Smith and P. Zenk, J. O rg. C hem., 1992, 57, 3563.

15 A. A lexakis, T. K anger, P. M angeney, F. Rose-M unch, A. Perrotey and E. Rose, Tetrahedron: A symmetry, 1995, 6, 47.
16 A. A lexakis, T. K anger, P. M angeney, F. Rose-M unch, A. Perrotey and E. Rose, Tetrahedron:A symmetry, 1995, 6, 2135.
17 P. Beak, S. T. K errick and D. J. G allagher, J. A m. C hem. Soc., 1993, 115, 10628.
18 J. Clayden and M. H elliwell, unpublished work.
19 T. H. Siddall and R. H. G arner, Can. J. C hem., 1966, 44, 2387.
20 A . H. Lewin and M . Frucht, Tetrahedron Lett., 1970, 1079.
21 A. H. Lewin, M. Frucht, K. V. J. Chen, E. Benedetti and B. di Blasio, Tetrahedron, 1975, 207.
22 W. B. Jennings and M. S. Tolley, Tetrahedron L ett., 1976, 695.
23 R. D. Bindal and J. A. K atzenellenbogen, J. Org. Chem., 1987, 52, 3181.

24 W. H. Stewart and T. H. Siddall, C hem. Rev., 1970, 70, 517.

25 J. H auer, E. Treml and H.-D. Lüdemann, J. Chem. Res. (M) , 1982, 516.

26 C. Kiefl, H. Zinner, T. Burgemeister and A. M annschreck, Rec. Trav. Chim. Pays-Bas, 1996, 115, 125.
$27 \mathrm{~L} . \mathrm{M} . \mathrm{Jackman}$, in Dynamic Nuclear Magnetic Resonance Spectroscopy, ed. L. M . Jackman and F. A .Cotton, A cademic Press, N ew York, 1975.
28 M. Oki, Top. Stereochem., 1983, 14, 1.
29 J. H. A ckerman, G. M. Laidlaw and G. A . Snyder, Tetrahedron L ett., 1969, 3879.
30 J. H. A ckerman and G. M . L aidlaw, Tetrahedron Lett., 1969, 4487.
31 A. Ohno, M. K ashiwagi, Y. Ishihara, S. U shida and S. Oka, Tetrahedron, 1986, 42, 961.
32 M. Okamura, Y. M ikata, N. Yamazaki, A . Tsutsumi and A. Ohno, Bull. Chem. Soc. J pn., 1993, 66, 1197.
33 P. M. van Lier, G. H. W. M. M eulendijks and H. M. Buck, Recl. Trav. Chim. Pays-B as, 1983, 102, 337.
34 P. M. T. de K ok, M.C. A. D onkersloot, P. M . van Lier, G. H. W. M. M eulendijks, L. A. M. Bastiaansen, H. J. G. van Hooff, J. A. K anters and H. M . Buck, Tetrahedron, 1986, 42, 941.

35 J. A. J. M. Vekemans, J. A. F. Boogers and H. M. Buck, J. Org. Chem., 1991, 56, 10.
36 P. M. T. de K ok, L. A. M. Bastiaansen, P. M. van Lier, J. A. J. M . Vekemans and H. M. Buck, J. Org. C hem., 1989, 54, 1313.
37 M. A. Cuyegkeng and A. M annschreck, Chem. Ber., 1987, 120, 803.
38 A. M annschreck, H. Zinner and N. Pustet, C himia, 1989, 43, 165.
39 W. H. Pirkle, C. J. Welch and A. J. Zych, J. Chromatogr., 1993, 648, 101.

40 M. H olík and A. M annschreck, Org. M agn. Reson., 1979, 12, 223.
41 R. K üspert and A. M annschreck, Org. M agn. Reson., 1982, 19, 6.
42 M. Holík, M. Turećková, A. M annschreck and G. Stühler, Org. M agn. R eson., 1982, 19, 121.
43 M. A. Bates, P. G. Sammes and G. A. Thomson, J. Chem. Soc., Perkin Trans. 1, 1988, 3037.
44 T. Hudlický, X. Tian, K. K önigsberger, R. M aurya, J. Rouden and B. Fan, J. Am. Chem. Soc., 1996, 118, 10752.

45 S. Thayumanavan, P. Beak and D. P. Curran, Tetrahedron Lett., 1996, 37, 2899.
46 P. Bowles, J. Clayden and M. Tomkinson, Tetrahedron Lett., 1995, 36, 9219.
47 M. Watanabe and V. Snieckus, J. A m. Chem. Soc., 1980, 102, 1453.
48 M. Iwao, K. K. M ahalanabis, M. Watanabe, S. O. de Silva and V. Snieckus, Tetrahedron, 1983, 39, 1955.

49 R. G. H arvey, C. Cortez and S. A. Jacobs, J. Org. Chem., 1982, 47, 2120.

50 J. K. R ay and R. G. H arvey, J. Org. C hem., 1982, 47, 3335.
51 J. K. R ay and R. G. H arvey, J. O rg. Chem., 1983, 48, 1352.
52 R. G. H arvey and C. Cortez, J. Org. Chem., 1987, 52, 283.
53 M . J. N ewman and V. K. K hanna, J. Org. C hem., 1986, 51, 1921.
54 K. N omura, K. Okazaki, K . H ori and E. Yoshii, J. Am. Chem. Soc., 1987, 3402.
55 D. P. Curran, H. Qi, S. J. Geib and N. C. DeM ello, J. Am. Chem. Soc., 1994, 116, 3131.
56 H. W. G schwend and H. R. Rodriguez, Org. R eac., 1979, 26, 1.
57 T. L. Brown, Pure A ppl. Chem., 1970, 23, 447.
58 P. G. Williard, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. F leming, Pergamon, Oxford, 1991, vol. 1, pp. 1-48.
59 W. Bauer, W. R. W inchester and P. v. R. Schleyer, Organometallics, 1987, 6, 2371.
60 W. Bauer and D. Seebach, H elv. Chim. A cta, 1984, 67, 1972.
61 J. Clayden, A ngew. Chem., Int. Ed. Engl., 1997, 36, 949 (A ngew. C hem., 1997, 109, 986).
62 A. D. Hughes, D. A. Price, O. Shishkin and N. S. Simpkins, Tetrahedron Lett., 1996, 37, 7607.
63 W. C. Still, M. K ahn and A. M itra, J. Org. C hem., 1978, 43, 2923.
64 G. Pagani, A. Baruffini and P. Borgna, Farmaco Ed. Sci., 1974, 29, 491 (C hem. A bstr. 1975, 82, 27 088).
65 B. H. A lexander, S. I. G ertler, T. A . Oda, R. T. Brown, R. W. Ihndris and M. Beroza, J. Org. Chem., 1960, 25, 626.
66 E. Rohrmann and H. A. Shonle, J. A m. C hem. Soc., 1944, 66, 1516.
67 C. J. Gilmore, J. A ppl. C rystallogr., 1984, 17, 42.
68 D. T. Cromer and J. T. Waber, International Tables for X-ray Crystallography, The Kynoch Press, Birmingham, England, 1974, vol. IV, Table 2.2A.
69 J. A . I bers and W. C. H amilton, A cta C rystallogr., 1964, 17, 781.
70 D. T. Cromer, International Tables for X-ray Crystallography, The Kynoch Press, Birmingham, England, 1974, vol. IV, Table 2.3.1.

Paper 7/01671|
Received 10th M arch 1997
A ccepted 14th M ay 1997

[^0]: \dagger Author to whom enquiries concerning X-ray crystallography should be addressed
 \ddagger M olecular modelling or X-ray crystallography of a number of N, N dialkylnaphthamides has given values within 5° of perpendicular for the dihedral angle between the aromatic ring and the plane of the amide group. ${ }^{18}$

[^1]: § M easurement of the barrier to rotation about the partial double bond in N,N-dialkylamides was a classic application of VT NMR spectroscopy. ${ }^{24,27}$

[^2]: || A tomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic D ata Centre (CCDC). See Instructions for Authors, J. C hem. Soc., Perkin Trans. 1, 1997, Issue 1. A ny request to the CCD C for this material should quote the full literature citation and the reference number 207/127.
 ** Ortholithiation must requirethealkyllithium to approach the2-proton more or less in the plane of the aromatic ring. A ddition to the ring on the other hand means the alkyllithium can steer well clear of the bulky $N R_{2}$ groups, approaching the ring at an angle and syn to oxygen. Thayumanavan et al. have observed competing addition of BusLi to N, N dialkylnaphthamides. ${ }^{45}$

